tính nhanh 1/2 x 2/3 x 3/4 x 4/5 .................... x 2012/2013
cứu với ai úng mình tick cho nhớ cụ thể
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có 2011 = x => 2012 = x + 1
Thay x + 1 = 2012 vào biểu thức ta dc:
x5 - (x + 1)x4 + (x + 1)x3 - (x+1)x2 + (x+1)x - 2012
= x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x - 2012 = x - 2012 = 2011 - 2012 = -1
Vậy giá trị của biểu thức là -1 khi x = 2011
b) Ta có : (x - 1)60 + (y + 2)90 = 0 <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Thay x = 1 và y = -2 vào biểu thức ta dc: 2.15 - 5.(-2)3 + 4 = 2 - 5.(-8) + 4 = 2 + 40 + 4 = 46
Vậy ...
Bài 1: a) P(x) = 0
=> 2 - 7x = 0
=> 7x = 2
=> x = 2 : 7
=> x = 2/7
Vậy x = 2/7 là nghệm của P(x)
b) Q(x) = 0
=> x^2 - 2 = 0
=> x^2 = 2
=> \(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Bài 2 : Ta có:
P(2011) = 20114 - 2012.20113 + 2012.20112 - 2012.2011 + 2012
= 20114 - (2011 + 1).20113 + (2011 + 1).20112 - (2011 + 1).2011 + (2011 + 1)
= 20114 - 20114 - 20113 + 20113 + 20112 - 20112 - 2011 + 2011 + 1
= 1
Bài 1 :
a, P= 2 - 7x Để p có nghiệm \(\Leftrightarrow\)P = 0 \(\Rightarrow\)2- 7 x =0 \(\Rightarrow\)7x =2 \(\Rightarrow\)x = \(\frac{2}{7}\) Vậy đa thức P có nghiệm bằng \(\frac{2}{7}\)
Bài làm:
Vì x=2011 => x+1=2012(*)
Thay (*) vào f(x) ta được:
f(2011) = x6 - (x+1)x5 + (x+1)x4 - (x+1)x3 + (x+1)x2 - (x+1)x + 2017
f(2011) = x6 - x5 - x4 + x3 + x2 - x2 - x +2017
f(2011) = -x +2017
f(2011) = -2011 + 2017
f(2011) = 6
Học tốt!!!!
\(x=2011\Rightarrow2012=x+1\)
\(\Rightarrow M\left(2011\right)=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+1\)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+1\)
\(=-x+1=-2011+1=-2010\)
A = \(\frac12\) x \(\frac23\) x \(\frac34\) x \(\frac45\) x ... x \(\frac{2012}{2013}\)
A = \(\frac{2\times3\times4\times\ldots\times2012}{2\times3\times4\times\ldots\times2012}\) x \(\frac{1}{2013}\)
A = 1 x \(\frac{1}{2013}\)
A = \(\frac{1}{2013}\)
`1/2xx2/3xx3/4xx4/5xx...xx2012/2013`
`=(1xx2xx3xx...xx2012)/(2xx3xx4xx...xx2013)`
`=1/2013xx(2xx3xx...xx2012)/(2xx3xx...xx2012)`
`=1/2013xx1`
`=1/2023`
Vậy: `..`