K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

P
Phong
CTVHS
28 tháng 8

`\sqrt{2x^2+3x+2}-\sqrt{x^2+x+1}=\sqrt{x}(x>=0)`

`<=>\sqrt{2(x^2+x+1)+x}-\sqrt{x^2+x+1}=\sqrt{x}`

Đặt: `\sqrt{x^2+x+1}=a;\sqrt{x}=b(a,b>=0)`

Khi đó ta được:

`\sqrt{2a^2+b^2}-a=b`

`<=>2a^2+b^2=(a+b)^2`

`<=>2a^2+b^2=a^2+2ab+b^2`

`<=>2a^2=a^2+2ab`

`<=>a^2-2ab=0`

`<=>a(a-2b)=0`

`TH1:a=0(tm)`

`=>\sqrt{x^2+x+1}=0`

`=>x^2+x+1=0` (vô lý)

`TH2:a-2b=0`

`<=>a=2b`

`<=>\sqrt{x^2+x+1}=2\sqrt{x}`

`<=>x^2+x+1=4x`

`<=>x^2-3x+1=0`

`\Delta=(-3)^2-4*1*1=5>0`

`x_1=(3+\sqrt{5})/2`(tm)

`x_2=(3-\sqrt{5})/2`(tm)
Vậy: `...`

28 tháng 8

Chúng ta cần giải phương trình:

\(\frac{2 x^{2} + 3 x + 2}{x^{2} + x + 1} = x\)


Bước 1: Nhân chéo để khử mẫu

Giả sử \(x^{2} + x + 1 \neq 0\), ta nhân hai vế với mẫu số \(x^{2} + x + 1\):

\(2 x^{2} + 3 x + 2 = x \left(\right. x^{2} + x + 1 \left.\right)\)


Bước 2: Khai triển vế phải

\(x \left(\right. x^{2} + x + 1 \left.\right) = x^{3} + x^{2} + x\)

Giờ phương trình trở thành:

\(2 x^{2} + 3 x + 2 = x^{3} + x^{2} + x\)


Bước 3: Chuyển vế để giải phương trình

\(0 = x^{3} + x^{2} + x - 2 x^{2} - 3 x - 2\)\(0 = x^{3} - x^{2} - 2 x - 2\)


Bước 4: Giải phương trình bậc 3

\(x^{3} - x^{2} - 2 x - 2 = 0\)

Ta thử nghiệm nghiệm hữu tỉ bằng phân tích nhân tử hoặc thử nghiệm nghiệm:

Thử \(x = - 1\):

\(\left(\right. - 1 \left.\right)^{3} - \left(\right. - 1 \left.\right)^{2} - 2 \left(\right. - 1 \left.\right) - 2 = - 1 - 1 + 2 - 2 = - 2 \neq 0\)

Thử \(x = 1\):

\(1 - 1 - 2 - 2 = - 4 \neq 0\)

Thử \(x = - 2\):

\(\left(\right. - 2 \left.\right)^{3} - \left(\right. - 2 \left.\right)^{2} - 2 \left(\right. - 2 \left.\right) - 2 = - 8 - 4 + 4 - 2 = - 10 \neq 0\)

Thử \(x = 2\):

\(8 - 4 - 4 - 2 = - 2 \neq 0\)

Không có nghiệm nguyên, ta dùng nhóm hạng tử:

\(x^{3} - x^{2} - 2 x - 2 = \left(\right. x^{2} \left.\right) \left(\right. x - 1 \left.\right) - 2 \left(\right. x + 1 \left.\right) = ?\)

Không tách được dễ, thử dùng phân tích đa thức bằng Horner:

Dùng phương pháp Horner cho \(f \left(\right. x \left.\right) = x^{3} - x^{2} - 2 x - 2\)


Dùng máy hoặc công cụ phân tích:

Tìm được một nghiệm xấp xỉ: \(x \approx 2.197\), nghiệm khác là nghiệm phức.


Bước 5: Xét điều kiện xác định

Ta có mẫu số là \(x^{2} + x + 1\)

Phương trình vô nghiệm khi:

\(x^{2} + x + 1 = 0\)

Giải: \(\Delta = 1^{2} - 4 \left(\right. 1 \left.\right) \left(\right. 1 \left.\right) = - 3 < 0\)

→ Mẫu luôn khác 0, nên phương trình xác định với mọi x.


Kết luận:

Phương trình:

\(\frac{2 x^{2} + 3 x + 2}{x^{2} + x + 1} = x\)

tương đương:

\(x^{3} - x^{2} - 2 x - 2 = 0\)

Phương trình này không có nghiệm hữu tỉ, có 1 nghiệm thực duy nhất xấp xỉ:

\(x \approx 2.197\)

và 2 nghiệm phức.

NV
22 tháng 2 2021

1.

ĐKXĐ: \(x\ge\dfrac{3+\sqrt{41}}{4}\)

\(\Leftrightarrow x^2+x-1+2\sqrt{x\left(x^2-1\right)}=2x^2-3x-4\)

\(\Leftrightarrow x^2-4x-3-2\sqrt{\left(x^2-x\right)\left(x+1\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-x}=a>0\\\sqrt{x+1}=b>0\end{matrix}\right.\)

\(\Rightarrow a^2-3b^2-2ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(a-3b\right)=0\)

\(\Leftrightarrow a=3b\)

\(\Leftrightarrow\sqrt{x^2-x}=3\sqrt{x+1}\)

\(\Leftrightarrow x^2-x=9\left(x+1\right)\)

\(\Leftrightarrow...\) (bạn tự hoàn thành nhé)

NV
22 tháng 2 2021

2.

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{x+1}=a\ge0\) pt trở thành:

\(x^3+3\left(x^2-4a^2\right)a=0\)

\(\Leftrightarrow x^3+3ax^2-4a^3=0\)

\(\Leftrightarrow\left(x-a\right)\left(x+2a\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=x\\2a=-x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=x\left(x\ge0\right)\\2\sqrt{x+1}=-x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=x+1\\x^2=4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-4x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=2-2\sqrt{2}\end{matrix}\right.\)

NV
20 tháng 8 2021

a.

ĐKXĐ: \(x^2+2x-1\ge0\)

\(x^2+2x-1+2\left(x-1\right)\sqrt{x^2+2x-1}-4x=0\)

Đặt \(\sqrt{x^2+2x-1}=t\ge0\)

\(\Rightarrow t^2+2\left(x-1\right)t-4x=0\)

\(\Delta'=\left(x-1\right)^2+4x=\left(x+1\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}t=1-x+x+1=2\\t=1-x-x-1=-2x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=2\\\sqrt{x^2+2x-1}=-2x\left(x\le0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-5=0\\3x^2-2x+1=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=-1\pm\sqrt{6}\)

NV
20 tháng 8 2021

b.

ĐKXĐ: \(x\ge\dfrac{1}{5}\)

\(2x^2+x-3+2x-\sqrt{5x-1}+2-\sqrt[3]{9-x}=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3\right)+\dfrac{\left(x-1\right)\left(4x-1\right)}{2x+\sqrt[]{5x-1}}+\dfrac{x-1}{4+2\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3+\dfrac{4x-1}{2x+\sqrt[]{5x-1}}+\dfrac{1}{4+2\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}\right)=0\)

\(\Leftrightarrow x=1\) (ngoặc đằng sau luôn dương)

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

18 tháng 5 2021

b)đk:\(x\ge\dfrac{1}{2}\)

Có: \(\sqrt{2x^2-1}\le\dfrac{2x^2-1+1}{2}=x^2\)

\(x\sqrt{2x-1}=\sqrt{\left(2x^2-x\right)x}\le\dfrac{2x^2-x+x}{2}=x^2\)

=>\(\sqrt{2x^2-1}+x\sqrt{2x-1}\le2x^2\) 

Dấu = xảy ra\(\Leftrightarrow x=1\)

Vậy....

c) đk: \(x\ge0\)

\(\Leftrightarrow\sqrt{x}=\sqrt{x+9}-\dfrac{2\sqrt{2}}{\sqrt{x+1}}\)
\(\Rightarrow x=x+9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)

\(\Leftrightarrow0=9+\dfrac{8}{x+1}-4\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\)

Đặt \(a=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\left(a>0\right)\)

\(\Leftrightarrow\dfrac{a^2-2}{2}=\dfrac{8}{x+1}\)

pttt \(9+\dfrac{a^2-2}{2}-4a=0\) \(\Leftrightarrow a=4\) (TM)

\(\Rightarrow4=\sqrt{\dfrac{2\left(x+9\right)}{x+1}}\) \(\Leftrightarrow16=\dfrac{2\left(x+9\right)}{x+1}\) \(\Leftrightarrow x=\dfrac{1}{7}\) (TM)
Vậy ...

 

18 tháng 5 2021

a)ĐKXĐ: x≥-1/3; x≤6

<=>\(\dfrac{3x-15}{\sqrt{3x+1}+4}+\dfrac{x-5}{\sqrt{x-6}+1}+\left(x-5\right)\cdot\left(3x+1\right)=0\Leftrightarrow\left(x-5\right)\cdot\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{\sqrt{x-6}+1}+3x+1\right)=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)(nhận)

(vì x≥-1/3 nên3x+1≥0 )

 

AH
Akai Haruma
Giáo viên
4 tháng 4 2021

Bạn coi lại đề xem có sai không chứ nghiệm giải ra xấu cực. Và phương trình không rút gọn hết nghe cũng rất vô lý.

4 tháng 4 2021

dạ vâng,em cx không bt có sai ko do đây là đề của thầy em đưa,chắc cx có sai sót mong thầy bỏ qua

21 tháng 9 2019

Điều kiện : \(x\ge0\)

Ta có : \(\sqrt{3x+1}-\sqrt{2x+2}=2\sqrt{x}-\sqrt{x+3}\)

            \(\Leftrightarrow3x+1+2x+2-2\sqrt{6x^2-8x+2}=4x+x+3-4\sqrt{x^2+3x}\)

            \(\Leftrightarrow\sqrt{6x^2+8x+2}=2\sqrt{x^2+3x}\)

              \(\Leftrightarrow6x^2+8x+2=4\left(x^2+3x\right)\)

             \(\Leftrightarrow2x^2-4x+2=0\Leftrightarrow x=1\)

Vậy nghiệm phương trình đã cho là : \(x=1\)

Chúc bạn học tốt !!!

NV
20 tháng 7 2021

a.

ĐKXĐ: \(x>0\)

\(\sqrt{x\left(x+3\right)}+2\sqrt{x+2}=2x+\sqrt{\dfrac{\left(x+2\right)\left(x+3\right)}{x}}\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-\sqrt{x+3}\right)+\sqrt{\dfrac{x+2}{x}}\left(\sqrt{x+3}-2\sqrt{x}\right)=0\)

\(\Leftrightarrow\sqrt{x}\left(\dfrac{4x-x-3}{2\sqrt{x}+\sqrt{x+3}}\right)-\sqrt{\dfrac{x+2}{x}}\left(\dfrac{4x-x-3}{\sqrt{x+3}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow\dfrac{3\left(x-1\right)}{2\sqrt{x}+\sqrt{x+3}}\left(\sqrt{x}-\sqrt{\dfrac{x+2}{x}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{x+2}{x}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-1\left(loại\right)\end{matrix}\right.\)

NV
20 tháng 7 2021

b.

ĐKXĐ: \(x\ge-\dfrac{1}{2};x\ne1-\sqrt{2}\)

\(x+2+x\sqrt{2x+1}=x\sqrt{x+2}+\sqrt{\left(x+2\right)\left(2x+1\right)}\)

\(\Leftrightarrow\sqrt{x+2}\left(\sqrt{2x+1}-\sqrt{x+2}\right)-x\left(\sqrt{2x+1}-\sqrt{x+2}\right)=0\)

\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{x+2}\right)\left(\sqrt{x+2}-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=\sqrt{x+2}\\\sqrt{x+2}=x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=x+2\\x^2-x-2=0\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-1\left(loại\right)\end{matrix}\right.\)