Tính nhanh:1 + 3^2 + 3^4 + 3^6 + ... + 3^2022
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


-13.21-13.80+13
=-13.(21-80+1)
=-13.100
=-1300
-1+2-3+4-5+6-...-2021+2022
=(-1+2)+(-3+4)+...+(-2021+2022)
=1+1+1+...+1 (1011 số hạng)
=1011
-13 . 21 - 13 . 80 + 13
13 ( -21 - 80 + 1 )
13 . ( -100 )
- 1300

1)
a) \(...=4^4-225=256-225=31\)
b) \(...=8.9.5+120=360-120=240\)
c) \(...=3^4-3^3=81-27=54\)
d) \(...=7^2-1=49-1=48\)
2) a) \(...=2^6=64\)
b) \(...=3^{15}:3^{10}=3^5=243\)
c) \(...=3^3-3^3=0\)
d) \(...=6^3+4^5=216+1024=1240\)

Ta có: C = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/2021.2022.2023
=> C = 1/2. (3-1/1.2.3 + 4-2/2.3.4 + 5-3/3.4.5 + ... + 2023-2021/2021.2022.2023
=> C = 1/2. (1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/2021.2022 - 1/2022.2023)
=> C = 1/2. (1/1.2 - 1/2022.2023)
- Phần còn lại bạn tự tính chứ số to quá


A=1−2−3+4−5−6+7−8−9+....+2020−2021−2022D=1-2-3+4-5-6+7-8-9+....+2020-2021-2022
A =(1−2−3)+(4−5−6)+(7−8−9)+....+(2020−2021−2022)D=(1-2-3)+(4-5-6)+(7-8-9)+....+(2020-2021-2022)
A=(−4)+(−7)+(−10)+.....+(−2023)D=(-4)+(-7)+(-10)+.....+(-2023)
A=[(2023−4):3+1].[(−2023−4):2]D=[(2023-4):3+1].[(-2023-4):2]
A=674.(−1013,5)D=674.(-1013,5)
A=−683099
A=1−2−3+4−5−6+7−8−9+....+2020−2021−2022D=1-2-3+4-5-6+7-8-9+....+2020-2021-2022
A =(1−2−3)+(4−5−6)+(7−8−9)+....+(2020−2021−2022)D=(1-2-3)+(4-5-6)+(7-8-9)+....+(2020-2021-2022)
A=(−4)+(−7)+(−10)+.....+(−2023)D=(-4)+(-7)+(-10)+.....+(-2023)
A=[(2023−4):3+1].[(−2023−4):2]D=[(2023-4):3+1].[(-2023-4):2]
A=674.(−1013,5)D=674.(-1013,5)
A=−683099

a) 17.13+17.42-17.35
=17.(13+42-35)
=17.20=340
b) [25.(18-42)-10]:4+6
=(25.2-10):4+6
=40:4+6=16
c) 36:32+23.22-32.3
=34+25-33
=81+32-27=86
d) B=3.42-22.3
=3.(16-4)
=3.12=36
e)20220+3.[52.10-(23-13)2]
=1+3.(250-100)
=1+450=451
g) 27.77+24.27-27
=27.(77+24-1)
=27.100=2700
h) 5.23+79:77-12020
=40+72-1
=89-1=88
i) 120:{54[50:2+(32-2.4)]}
=120:[54(25+1)]
=120:1404=10/117

=(1-2)-(3-4)+(5-6)-(7-8)+...+(2021-2022)-2023
=(-1)-(-1)+(-1)-...+(-1)-2023
=0-2023
=-2023
Đặt \(A=1+3^2+3^4+\cdots+3^{2022}\)
=>\(9A=3^2+3^4+3^6+\cdots+3^{2024}\)
=>\(9A-A=3^2+3^4+3^6+\cdots+3^{2024}-1-3^2-\cdots-3^{2022}\)
=>\(8A=3^{2024}-1\)
=>\(A=\frac{3^{2024}-1}{8}\)