K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S
9 giờ trước (19:38)

\(\left(x-3\right)^2+6-2x\)

\(=x^2-6x+9+6-2x\)

\(=x^2-8x+14\)

\(\triangle=\left(-8\right)^2-4\cdot1\cdot14=8\)

\(x_1=\frac{8-\sqrt8}{2\cdot1}=4-\sqrt2\)

\(x_1=\frac{8+\sqrt8}{2\cdot1}=4+\sqrt2\)

kết luận: \(x_1=4-\sqrt2;x_2=4+\sqrt2\)

15 tháng 3 2022

\(5x-4\left(6x+18-x^2-3x\right)=\left(12-8x-6x+4x^2\right)+2\)

\(\Leftrightarrow5x-4\left(-x^2+3x+18\right)=\left(4x^2-14x+12\right)+2\)

\(\Leftrightarrow4x^2-7x-72=4x^2-14x+14\Leftrightarrow7x=86\Leftrightarrow x=\dfrac{86}{7}\)

29 tháng 3 2018

Violympic toán 8

a) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x+1}{x-2}-\dfrac{5}{x+2}=\dfrac{12}{x^2-4}+1\)

\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2+3x+2-5x+10=12+x^2-4\)

\(\Leftrightarrow x^2-2x+12-8-x^2=0\)

\(\Leftrightarrow-2x+4=0\)

\(\Leftrightarrow-2x=-4\)

hay x=2(loại)

Vậy: \(S=\varnothing\)

b) Ta có: \(\left|2x+6\right|-x=3\)

\(\Leftrightarrow\left|2x+6\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+6=x+3\left(x\ge-3\right)\\-2x-6=x+3\left(x< -3\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-x=3-6\\-2x-x=3+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(nhận\right)\\x=-3\left(loại\right)\end{matrix}\right.\)

Vậy: S={-3}

12 tháng 3 2021

ĐKXĐ: \(-3\le x\le6\)

Trước hết ta chứng minh:

\(\sqrt{x+3}+\sqrt{6-x}\le3\sqrt{2}\)

Mặt khác điều này hiển nhiên do bất đẳng thức Bunyakovski: 

\(VT\le\sqrt{2\left[\left(x+3\right)+\left(6-x\right)\right]}=3\sqrt{2}\)

Đẳng thức xảy ra khi \(x+3=6-x\Leftrightarrow x=\dfrac{3}{2}\)

Mặt khác theo AM-GM: 

\(6\sqrt{2x+6}-2x-13=2\sqrt{9\left(2x+6\right)}-2x-13\le\left[9+\left(2x+6\right)\right]-2x-13=2\)

Đẳng thức xảy ra khi $x=\dfrac{3}{2}.$

Từ đây thu được \(VT\le VP.\)

Đẳng thức xảy ra khi $x=\dfrac{3}{2}.$

Vậy \(S=\left\{\dfrac{3}{2}\right\}\)

NV
19 tháng 1 2021

ĐKXĐ: \(-1\le x\le3\)

\(x^3+x+6=2\left(x+1\right)\sqrt{3+2x-x^2}\le\left(x+1\right)^2+3+2x-x^2\)

\(\Rightarrow x^3+x+6\le4x+4\)

\(\Rightarrow x^3-3x+2\le0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)\le0\)

Do \(x\ge-1\) nên (1) thỏa mãn khi và chỉ khi \(\left(x-1\right)^2\left(x+2\right)=0\)

\(\Leftrightarrow x=1\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}=\dfrac{2x}{\left(x-3\right)\left(x+1\right)}\)

\(\Leftrightarrow x^2+x+x^2-3x=4x\)

\(\Leftrightarrow2x^2-6x=0\)

\(\Leftrightarrow2x\left(x-3\right)=0\)

=>x=0(nhận) hoặc x=3(loại)

14 tháng 2 2022

đk : x khác -1 ; 3 

\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)=4x\Leftrightarrow2x^2-2x-4x=0\)

\(\Leftrightarrow2x^2-6x=0\Leftrightarrow2x\left(x-3\right)=0\Leftrightarrow x=0;x=3\left(ktm\right)\)

17 tháng 10 2021

hình như bạn ghi sai đề phải k ạ 

 

20 tháng 10 2021

ko đâu

 

14 tháng 9 2023

\(a,\dfrac{2x-1}{3}< \dfrac{x+6}{2}\)

\(\Leftrightarrow\dfrac{4x-2}{6}< \dfrac{3x+18}{6}\)

\(\Leftrightarrow4x-2< 3x+18\)

\(\Leftrightarrow4x-3x< 2+18\)

\(\Leftrightarrow x< 20\)

\(b,\dfrac{5\left(x-1\right)}{6}-1>\dfrac{2\left(x+1\right)}{3}\)

\(\Leftrightarrow\dfrac{5x-11}{6}>\dfrac{4x+4}{6}\)

\(\Leftrightarrow5x-11>4x+4\)

\(\Leftrightarrow5x-4x>11+4\)

\(\Leftrightarrow x>15\)

Ta có: \(\dfrac{2x+1}{6}-\dfrac{x-2}{4}=\dfrac{3-2x}{3}-x\)

\(\Leftrightarrow4x+2-3x+6=12-8x-12x\)

\(\Leftrightarrow x+8+20x-12=0\)

\(\Leftrightarrow x=\dfrac{4}{21}\)