hai đường thẳng ab và cd cắt nhau tại o, tạo thành bốn góc o1, o2, o3, o4, tính các góc còn lại trong trường hợp
a) o3 = 55 độ
b) o1 + o3 = 150 độ
Giúp mình bài này với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A O C D B
TH1: \(\widehat{AOC}+\widehat{AOD}+\widehat{BOD}=230o\)
Mà \(\widehat{AOC}=\widehat{BOD}\) (2 góc đối đỉnh)
=> \(2.\widehat{AOC}+\widehat{AOD}=230o\)
Mà \(\widehat{AOC}+\widehat{AOD}=180o\) (2 góc kề bù)
=> \(\left\{{}\begin{matrix}\widehat{AOC}=\widehat{BOD}=50o\\\widehat{AOD}=\widehat{BOC}=130o\end{matrix}\right.\)
TH2: \(\widehat{AOD}+\widehat{BOD}+\widehat{BOC}=230o\)
Mà \(\widehat{AOD}=\widehat{BOC}\) (2 góc đối đỉnh)
=> \(2.\widehat{AOD}+\widehat{BOD}=230o\)
Mà \(\widehat{AOD}+\widehat{BOD}=180o\)
=> \(\left\{{}\begin{matrix}\widehat{AOD}=\widehat{BOC}=50o\\\widehat{BOD}=\widehat{AOC}=130o\end{matrix}\right.\)
vô lí do \(\widehat{AOC}>\widehat{BOC}\)
Số đo các góc còn lại lần lượt là \(120^0;120^0;60^0\)
Ta có: A O C ^ = B O D ^ (hai góc đối đỉnh) mà A O C ^ + B O D ^ = 100 ° nên A O C ^ = B O D ^ = 100 ° : 2 = 50 ° .
Hai góc AOC và BOC kề bù nên B O C ^ = 180 ° − 50 ° = 130 ° .
Do đó A O D ^ = B O C ^ = 130 ° (hai góc đối đỉnh).
a) Khi \(o_3=55^{\circ}\)
b) Khi \(o_1+o_3=150^{\circ}\)
Tóm tắt kết quả:
Giải:
\(\hat{o_1}\) = \(\hat{O_3}\) = \(55^0\) (hai góc đối đỉnh)
\(\hat{O4}\) + \(\hat{O3}\) = 180\(^0\) (hai góc kề bù)
\(\hat{O_4}\) = 180\(^0\) - \(\hat{O_3}\)
\(\hat{O}_4\) = 180\(^0\) - 55\(^0\) = 125\(^0\)
\(\hat{O_4}\) = \(\hat{O_2}\) = 125\(^0\) (hai góc đối đỉnh)