Dấu hiệu nhận biết bất đằng thức tam giác là gì ❓
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

+ Nếu cạnh bên và cạnh đáy của tam giác cân này tỉ lệ với cạnh bên và cạnh đáy của tam giác cân kia thì hai tam giác đó đồng dạng.
+ Nếu hai tam giác cân có hai góc ở đỉnh bằng nhau thì hai tam giác cân đồng dạng.
+ Nếu góc ở đáy của tam giác cân này bằng góc ở đáy của tam giác cân kia thì hai tam giác cân đó đồng dạng.

+ Nếu cạnh bên và cạnh đáy của tam giác cân này tỉ lệ với cạnh bên và cạnh đáy của tam giác cân kia thì hai tam giác đó đồng dạng.
+ Nếu hai tam giác cân có hai góc ở đỉnh bằng nhau thì hai tam giác cân đồng dạng.
+ Nếu góc ở đáy của tam giác cân này bằng góc ở đáy của tam giác cân kia thì hai tam giác cân đó đồng dạng.

Từ trường hợp 1 ta có:
- Nếu cạnh bên và cạnh dáy của tam giác cân này tỉ lệ với cạnh bên và cạnh đáy của tam giác cân kia thì hai tam giác đó đồng dạng.
Từ trường hợp 2 và 3 ta nói:
- Nếu hai tam giác cân có một góc tương ứng bằng nhau thì hai tam giác đó đồng dạng.
Từ trường hợp 1 ta có:
- Nếu cạnh bên và cạnh đáy của tam giác cân này tỉ lệ với cạnh bên và cạnh đáy của tam giác cân kia thì hai tam giác đó đồng dạng.
Từ trường hợp 2 và 3 ta có:
- Nếu hai tam giác cân có một góc tương ứng bằng nhau thì hai tam giác đó đồng dạng.

C/m BĐT phụ: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) (*) (x,y dương)
Ta có: \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\)\(x^2-2xy+y^2\ge0\)
\(\Leftrightarrow\)\(x^2+y^2\ge2xy\)
\(\Leftrightarrow\)\(x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)
\(\Leftrightarrow\)\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) (BĐT đã đc chứng minh)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)
ÁP dụng BĐT (*) ta có:
\(\frac{1}{p-a}+\frac{1}{p-b}\ge\frac{4}{p-a+p-b}=\frac{4}{2p-\left(a+b\right)}=\frac{4}{c}\) (1)
\(\frac{1}{p-b}+\frac{1}{p-c}\ge\frac{4}{p-b+p-c}=\frac{4}{2p-\left(b+c\right)}=\frac{4}{a}\) (2)
\(\frac{1}{p-c}+\frac{1}{p-a}\ge\frac{4}{p-c+p-a}=\frac{4}{2p-\left(c+a\right)}=\frac{4}{b}\) (3)
Lấy (1); (2); (3) cộng theo vế ta được:
\(2\left(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\right)\ge4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(\Leftrightarrow\)\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) (đpcm)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
Khi đó \(\Delta ABC\)là tam giác đều

Tham khảo
- Dấu hiệu để nhận biết chi tiết máy : là phần tử có cấu tạo hoàn chỉnh và không thể tháo rời đc hơn nữa
+ Nhóm chi tiết có công dụng chung: đc sử dụng trong nhìu loại máy khác nhau như bu lông, đai óc,lò so,....
+ Nhóm chi tiết có công dụng riêng: chỉ đc sử dụng trong 1 loại máy nhất định như khung xe đạp, kim máy khâu

Dấu hiệu nhận biết hình vuông:
+ Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.
+ Hình chữ nhật có hai đường chéo vuông góc với nhau là hình vuông.
+ Hình chữ nhật có một đường chéo là đường phân giác một góc là hình vuông.
+ Hình thoi có một góc vuông là hình vuông.
+ Hình thoi có hai đường chéo bằng nhau là hình vuông.
→ Hình bình hành có hai đường chéo bằng nhau thì không là hình vuông.
→ Đáp án D sai.
Chọn đáp án D.

Dấu hiệu nhận biết hình vuông:
+ Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.
+ Hình chữ nhật có hai đường chéo vuông góc với nhau là hình vuông.
+ Hình chữ nhật có một đường chéo là đường phân giác một góc là hình vuông.
+ Hình thoi có một góc vuông là hình vuông.
+ Hình thoi có hai đường chéo bằng nhau là hình vuông.
⇒ Hình bình hành có hai đường chéo bằng nhau thì không là hình vuông.
⇒ Đáp án D sai.
Chọn đáp án D.

Để nhận biết một số có thể chia hết cho 7, ta cắt giảm chữ số cuối cùng đi 1 số, nhân đôi số đó và lấy số cắt giảm trừ đi số đã nhân đôi. Điều này cần được thực hiện lặp đi lặp lại một vài lần, đến khi thu được một số có thể chia hết cho 7 (như: 14, 7, 0, -7, v.v…), thì số đã cho chia hết cho 7.
Lấy chữ số đầu tiên nhân với 3 rồi cộng thêm chữ số tiếp theo, được bao nhiêu nhân với 3 rồi lại cộng chữ số tiếp theo... cứ như vậy cho đén chữ số cuối cùng. nếu kết quả cuối cùng này chia hết cho 7 thì số đó chia hết cho 7
Chúc bạn học tốt
thực gia là chỉ cần la tam giác là có bất đẳng thức tam giác (bất đẳng thức tam giác là tổng hai canh của một tam giác luôn lớn hơn cạnh còn lại )
ví dụ đặt ba cạnh là a , b , c
thì nếu a<b+c , b<a+c , c<a+b thì đó là tam giác
nếu koong thảo mãn bất ki điều kiện nào trang đó thì nó không phải là tam giác
:))