K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8

Ta có m>n (giả thiết).

Chứng minh 5m−7>5n−7

Nhân cả hai vế của bất đẳng thức m>n với 5, ta được: 5m>5n

Cộng cả hai vế với -7, ta được: 5m−7>5n−7

Vậy, 5m−7>5n−7 được chứng minh.

Chứng minh 25−6m<25−6n

Nhân cả hai vế của bất đẳng thức m>n với -6. Khi nhân với một số âm, dấu của bất đẳng thức sẽ đổi chiều: −6m<−6n

Cộng cả hai vế với 25, ta được: 25+(−6m)<25+(−6n) 25−6m<25−6n

Vậy, 25−6m<25−6n được chứng minh.

18 tháng 5 2020

a, Ta có m<n

⇔m+3 < n+3 (t/c)

b, Ta có m<n

⇔-3m>-3n(t/c)

c, Ta có m<n

⇔4m < 4n (t/c)

⇔4m-7 <4n-7 (t/c)

d, Ta có m<n

⇔-5m > -5n (t/c)

⇔-5m+10> -5n+10(t/c)

Hay 10-5m > 10-5n

chúc bạn học tốt !

5 tháng 5 2019

a) -8m + 2
 Vì m>n mà số nguyên âm nào có trị tuyệt đối lớn hơn thì bé hơn nên suy ra ta có:

-8m + 2 < - 8n + 2

b) 6n - 1 với 6m + 2

6n - 1 < 6m + 2

4 tháng 5 2017

a. Ta có: m<n

<=> 2m<2n (nhân cả hai vế với 2)

<=> 2m+1<2n+1 (cộng cả hai vế với 1) \(\xrightarrow[]{}\) đpcm

b. Ta có: m<n

<=> m-2<n-2 (cộng cả hai vế với -2)

<=> 4(m-2)<4(n-2) (nhân cả hai vế với 4) \(\xrightarrow[]{}\) đpcm

4 tháng 5 2017

c. Ta có: m<n

<=> -6m>-6n (nhân cả hai vế với -6)

<=> 3-6m>3-6n (cộng cả hai vế với 3) \(\xrightarrow[]{}\) đpcm

d. Ta có: m<n

<=> 4m<4n (nhân cả hai vế với 4)

<=> 4m+1<4n+1 (cộng cả hai vế với 1)

mà 4n+1<4n+5

=> 4m+1<4n+5 \(\xrightarrow[]{}đpcm\)

23 tháng 4 2017

5m+2 và 5n+2 cùng thêm một lượng như nhau là 2 mà m>n nên 5m>5n \(\Rightarrow\)5m+2>5n+2

23 tháng 4 2017

5m+2>5n+2

=>(m*5)+2>(n*5)+2

=> m*5>n*5

mà m>n nên 5m chắc chắn lớn hơn 5n

5 tháng 5 2018

Ta có:

m > n

\(\Rightarrow\) 5m > 5n

mà 1 > -4

\(\Rightarrow\) 5m + 1 > 5n - 4

Chúc bạn học tốt!!! ngoc do

5 tháng 5 2018

cảm ơn nhìu nh!

5 tháng 5 2017

a, Ta có: \(m< n\Leftrightarrow4m< 4n\) (nhân cả hai vế với 4)

\(\Leftrightarrow4m+1< 4n+1\) (cộng cả hai vế với 1)

mà 1<5 \(\Leftrightarrow4n+1< 4n+5\)

\(\Rightarrow4m+1< 4n+5\)

b. Ta có: \(m< n\Leftrightarrow-5m>-5n\) (nhân cả hai vế với -5)

\(\Leftrightarrow3-5m>3-5n\) (cộng cả hai vế với 3)

mà 1<3 \(\Leftrightarrow1-5n< 3-5n\)

\(\Rightarrow3-5m>1-5n\)