K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8

(8x3+1):(2x+1)=((2x)3+1):(2x+1)=(2x+1)(4x2−2x+1):(2x+1)=4x2−2x+1

x2 + 3x + 6

15 tháng 8

(\(x^3\) + \(x^2\) - 12) : (\(x\) - 2)

= [(\(x^3-8)\) + (\(x^2\) - 4)] :(\(x-2\))

= [(\(x-2\))(\(x^2+2x+4)\) + \(\left(x-2\right)\left(x+2\right)\)] :(\(x-2\))

= (\(x-2\))(\(x^2+2x+4\) + \(x+2\)):(\(x-2\)

= (\(x-2):\left(x-2\right)\).[\(x^2\) + (2\(x\) + \(x\)) + (4 + 2)]

= 1.[\(x^2\) + 3\(x\) + 6]

= \(x^2+3x+6\)

9 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)

\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)

\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

 Mọi người làm nhanh hộ e với ạ, T7 e nộp rBài 1.Tính:a. x2(x–2x3) b. (x2+ 1)(5–x) c. (x–2)(x2+ 3x–4) d. (x–2)(x–x2+ 4)e. (x2–1)(x2+ 2x)   f. (2x–1)(3x + 2)(3–x)  g. (x + 3)(x2+ 3x–5)h (xy–2).(x3–2x–6)  i. (5x3–x2+ 2x–3).(4x2–x + 2)Bài 2.Tính:a. (x–2y)2   b. (2x2+3)2     c. (x–2)(x2+ 2x + 4)    d. (2x–1)2Bài 3: Rút gọn biểu thứca.(6x + 1)2+ (6x–1)2–2(1 + 6x)(6x–1)b. x(2x2–3)–x2(5x + 1) + x2.c....
Đọc tiếp

 

Mọi người làm nhanh hộ e với ạ, T7 e nộp rkhocroi

Bài 1.

Tính:

a. x2(x–2x3) b. (x2+ 1)(5–x) c. (x–2)(x2+ 3x–4) d. (x–2)(x–x2+ 4)

e. (x2–1)(x2+ 2x)   f. (2x–1)(3x + 2)(3–x)  g. (x + 3)(x2+ 3x–5)

h (xy–2).(x3–2x–6)  i. (5x3–x2+ 2x–3).(4x2–x + 2)

Bài 2.

Tính:

a. (x–2y)2   b. (2x2+3)2     c. (x–2)(x2+ 2x + 4)    d. (2x–1)2

Bài 3: Rút gọn biểu thức

a.(6x + 1)2+ (6x–1)2–2(1 + 6x)(6x–1)

b. x(2x2–3)–x2(5x + 1) + x2.

c. 3x(x–2)–5x(1–x)–8(x2–3)

Bài 4: Tìm x, biết

a. (x–2)2–(x–3)(x + 3) = 6.

b. 4(x–3)2–(2x–1)(2x + 1) = 10

c. (x–4)2–(x–2)(x + 2) = 6.

d. 9 (x + 1)2–(3x–2)(3x + 2) = 10

Bài 5:Phân tích các đa thức sau thành nhân tử

a. 1–2y + y2

b. (x + 1)2–25

c. 1–4x2

d. 8–27x3

e. 27 + 27x + 9x2+ x3

f. 8x3–12x2y +6xy2–y3

g. x3+ 8y3

Bài 6:Phân tích các đa thức sau thành nhân tử

a. 3x2–6x + 9x2

b. 10x(x–y)–6y(y–x)

c. 3x2+ 5y–3xy–5x

d. 3y2–3z2+ 3x2+ 6xy

e. 16x3+ 54y3

f. x2–25–2xy + y2

g. x5–3x4+ 3x3–x2

.

Bài 7: Phân tích đa thức thành nhân tử

a. 5x2–10xy + 5y2–20z2

b. 16x–5x2–3

c. x2–5x + 5y–y2

d. 3x2–6xy + 3y2–12z2

e. x2+ 4x + 3

f. (x2+ 1)2–4x2

g. x2–4x–5

1
13 tháng 9 2021

Bài 5: 

a. 1 - 2y + y2

= (1 - y)2

b. (x + 1)2 - 25

= (x + 1)2 - 52

= (x + 1 - 5)(x + 1 + 5)

= (x - 4)(x + 6)

c. 1 - 4x2

= 12 - (2x)2

= (1 - 2x)(1 + 2x)

d. 8 - 27x3

= 23 - (3x)3

= (2 - 3x)(4 + 6x + 9x2)

e. (đề hơi khó hiểu ''x3'' !?)

g. x3 + 8y3

= (x + 2y)(x2 - 2xy + y2)

30 tháng 9 2021

\(A=6x^2+23x+21-\left(6x^2+23x-55\right)=76\\ B=x^4+x^3-x^2-2x^2-2x+2-x^4-x^3+3x^2+2x\\ =2\\ C=x^4+x^3-3x^2-2x-\left(x^4+x^3-x^2-2x^2-2x+2\right)\\ =-2\)

17 tháng 7 2021

a) `(x^3-x^2)/(x^3-2x^2+x)`

`=(x^2(x-1))/(x(x-1)(x-1))`

`=x/(x-1)`

`=>` 2 phân thức bằng nhau.

b) `(x^2+2x+1)/(2x^2-2)`

`=((x+1)(x+1))/(2(x+1)(x-1))`

`=(x+1)/(2(x-1))`

`=(x+1)/(2x-2)`

`=>` 2 phân thức bằng nhau

a) Ta có: \(\dfrac{x^3-x^2}{x^3-2x^2+x}\)

\(=\dfrac{x^2\left(x-1\right)}{x\left(x^2-2x+1\right)}\)

\(=\dfrac{x\cdot\left(x-1\right)}{\left(x-1\right)^2}=\dfrac{x}{x-1}\)

b) Ta có: \(\dfrac{x^2+2x+1}{2x^2-2}\)

\(=\dfrac{\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{x+1}{2x-2}\)

28 tháng 1 2022

a, \(A=2x^3-9x^5+3x^5-3x^2+7x^2-12=-6x^5+2x^3+4x^2-12\)

b, \(B=2x^4+x^2+2x-2x^3-2x^2+x^2-2x+1=2x^4-2x^3+1\)

c, \(C=2x^2+x-x^3-2x^2+x^3-x+3=3\)

9 tháng 11 2021

\(a,\Leftrightarrow x^3-8-x^3-2x=12\Leftrightarrow-2x=20\Leftrightarrow x=-10\\ b,\Leftrightarrow x^2-6x+9-x^2+4=16\Leftrightarrow=-6x=3\Leftrightarrow x=-\dfrac{1}{2}\\ c,\Leftrightarrow x\left(x^2-9\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-6\right)+9\left(x-6\right)=0\\ \Leftrightarrow\left(x^2+9\right)\left(x-6\right)=0\\ \Leftrightarrow x=6\left(x^2+9>0\right)\)