(x+3)( (x+3)/2 -1)=0
giải giúp mình phương trình này với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(\left(x-4-5\right)\left(x-4+5\right)=0\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\Leftrightarrow x=9;x=-1\)
b, \(\left(x-3-x-1\right)\left(x-3+x+1\right)=0\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
c, \(\left(x^2-4\right)\left(2x-3\right)-\left(x^2-4\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x-3-x+1\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-2\right)=0\Leftrightarrow x=-2;x=2\)
d, \(\left(3x-7\right)^2-\left(2x+2\right)^2=0\Leftrightarrow\left(3x-7-2x-2\right)\left(3x-7+2x+2\right)=0\)
\(\Leftrightarrow\left(x-9\right)\left(5x-5\right)=0\Leftrightarrow x=1;x=9\)
a) Ta có: 4x-20=0
⇔4x=20⇔4x=20
hay x=5
Vậy: S={5}
b) Ta có: 2x+x+12=02x+x+12=0
⇔3x+12=0⇔3x+12=0
⇔3x=−12⇔3x=−12
hay x=-4
Ta có: \(x^3-5x^2+6x=0\)
\(\Leftrightarrow x\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=3\end{matrix}\right.\)
Vậy: S={0;2;3}
\(x^3-5x^2+6x=0\)
\(\Leftrightarrow x^3-2x^2-3x^2+6x=0\)
\(\Leftrightarrow x^2\left(x-2\right)-3x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^2-3x\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=3\end{matrix}\right.\)
\(S=\left\{0,2,3\right\}\)
\(\frac{x-1}{x-2}+\frac{x+3}{x-4}=\frac{2}{\left(x-2\right)\left(x-4\right)}\)
\(ĐKXĐ:x\ne2,x\ne4\)
\(MC:\left(x-2\right)\left(x-4\right)\)
\(PT\Leftrightarrow\left(x-1\right)\left(x-4\right)+\left(x+3\right)\left(x-2\right)=2\)
\(\Leftrightarrow x^2-5x+4+x^2+x-6=2\)
\(\Leftrightarrow2x^2-4x-4=0\)
\(\Leftrightarrow2\left(x^2-2x-2\right)=0\)
\(\Leftrightarrow x^2-2x=2\)
\(\Leftrightarrow x\left(x-2\right)=2\)
\(\Leftrightarrow x\left(x-2\right)-2=0\)
ĐK:\(x\ge2\)
\(\sqrt{x-2}\times\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow\sqrt{x-2}=0\)hoặc\(x^2-4x+3=0\)
\(\Leftrightarrow\hept{\begin{cases}x=1\left(loai\right)\\x=2\left(tm\right)\\x=3\left(tm\right)\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}\left(tm\right)}\)
\(\left(2x-1\right)^2+\left(x-3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x-1+x-3\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\3x=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{4}{3}\end{matrix}\right.\)
Vậy \(S=\left\{\dfrac{1}{2};\dfrac{4}{3}\right\}\)
\(\left(x+3\right)\left(\frac{x+3}{2}-1\right)=0\)
TH1: \(x+3=0\)
\(x=-3\)
TH2: \(\frac{x+3}{2}-1=0\)
\(\frac{x+3}{2}=1\)
\(x+3=2\)
\(x=2-3=-1\)
Vậy phương trình đã cho có 2 nghiệm \(x=-3;x=-1\)
(\(x+3\)).(\(\frac{x+3}{2}\) - 1) = 0
\(\left[\begin{array}{l}x+3=0\\ \frac{x+3}{2}-1=0\end{array}\right.\)
\(\left[\begin{array}{l}x=-3\\ \frac{x+3}{2}=1\end{array}\right.\)
\(\left[\begin{array}{l}x=-3\\ x+3=2\end{array}\right.\)
\(\left[\begin{array}{l}x=-3\\ x=2-3\end{array}\right.\)
\(\left[\begin{array}{l}x=-3\\ x=-1\end{array}\right.\)
vậy \(x\) ∈ {-3; -1}