Tìm y biết
(2y-1)^50=2y-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để (2y - 1)^50 = 2y-1 thì suy ra 2y-1 = 1
Vậy y = 1
Nhớ k nhé! Thank you!!!
=> \(\left(2y-1\right)^{50}-\left(2y-1\right)=0\)
=>\(\left(2y-1\right)\left[\left(2y-1\right)^{49}-1\right]=0\)
=> 2y - 1 = 0 hoặc (2y-1)^49 - 1 =0
=> y = 1/2 hoặc (2y-1)^49 = 1
=> y=1/2 hoặc 2y-1=1 => y=1
a) y^200 = y
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=0\end{cases}}\)
b) y^2008 = y^2010
\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=0\end{cases}}\)
c) (2y - 1)^50 = 2y - 1
\(\Leftrightarrow\orbr{\begin{cases}2y-1=1\\2y-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=1\\y=\frac{1}{2}\end{cases}}\)
d) (y/3 - 5)^2000= y/3 -5
\(\Leftrightarrow\orbr{\begin{cases}\frac{y}{3}-5=1\\\frac{y}{3}-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=18\\y=15\end{cases}}\)
( x - 1 )5 = 32
Mà 25 = 32
=> x - 1 = 2
=> x = 2 + 1
=> x = 3
Vậy x = 3
( x - 1 )5 = 32 y200 = y
( x - 1 )5 = 25 => y = 1
=> x - 1 = 2
x = 2 + 1
x = 3
Vậy x = 3
\(a,\Leftrightarrow y^{200}-y=y\left(y^{199}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\y^{199}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\)
Vậy ..
\(b,\Leftrightarrow y^{2010}-y^{2008}=y^{2008}\left(y^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y^{2008}=0\\y^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=1\\y=-1\end{matrix}\right.\)
Vậy ...
\(c,\Leftrightarrow\left(2y-1\right)^{50}-\left(2y-1\right)=\left(2y-1\right)\left(\left(2y-1\right)^{49}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2y-1=0\\\left(2y-1\right)^{49}=1\end{matrix}\right.\)
\(\Leftrightarrow y=\dfrac{1}{2}\)
Vậy ..
\(d,\Leftrightarrow\left(\dfrac{y}{3}-5\right)^{2008}\left(\left(\dfrac{y}{3}-5\right)^2-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(\dfrac{y}{3}-5\right)^{2008}=0\\\left(\dfrac{y}{3}-5\right)^2=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{y}{3}-5=0\\\dfrac{y}{3}-5=1\\\dfrac{y}{3}-5=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y=15\\y=18\\y=12\end{matrix}\right.\)
Vậy ..
\(y\left(2y-3\right)\left(2y-1\right)\left(y+1\right)=24\)
\(\Leftrightarrow\left[y\left(2y-1\right)\right]\left[\left(2y-3\right)\left(y+1\right)\right]=24\)
\(\Leftrightarrow\left(2y^2-y\right)\left(2y^2-y-3\right)=24\)
\(\Leftrightarrow t\left(t-3\right)=24\) (với \(t=2y^2-y\)), suy ra \(t\ge-\dfrac{1}{8}\)
\(\Leftrightarrow t^2-3t-24=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{3+\sqrt{105}}{2}\left(nhận\right)\\t=\dfrac{3-\sqrt{105}}{2}\left(loại\right)\end{matrix}\right.\)
Suy ra \(2y^2-y=\dfrac{3+\sqrt{105}}{2}\)
Tới đây thì mình nghĩ bạn tìm đc y rồi đó.
x/2=y/3;y/2=z/5 => x/2=2y/6;3y/6=z/5 => x/4=y/6=z/15
adtcdtsbn:
x/4=y/6=z/15=x+y+z/4+6+15=50/25=2
suy ra : x/4=2=>x=4.2=8
y/6=2=>y=2.6=12
z/15=2 => z=15.2=30
\(\dfrac{x}{4}=\dfrac{2y+1}{3}=\dfrac{x-2y-1}{y}=\dfrac{x-2y-1-x+2y+1}{4-3-y}=\dfrac{0}{1-y}=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\2y+1=0\\x-2y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}\end{matrix}\right.\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{x}{4}=\dfrac{2y+1}{3}=\dfrac{x-2y-1}{y}=\dfrac{x-2y-1}{4-3}=\dfrac{x-2y-1}{1}=x-2y-1\)
\(\dfrac{x-2y-1}{y}=x-2y-1\Rightarrow x-2y-1=y\left(x-2y-1\right)\Rightarrow\left(y-1\right)\left(x-2y-1\right)=0\Rightarrow\left[{}\begin{matrix}y=1\\x-2y-1=0\end{matrix}\right.\)
Với y=1:\(\dfrac{x}{4}=\dfrac{2y+1}{3}=\dfrac{2.1+1}{3}=1\Rightarrow x=4\)
Với \(x-2y-1=0\)\(\Rightarrow\dfrac{x}{4}=\dfrac{2y+1}{3}=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(\left(x,y\right)\in\left\{\left(4;1\right);\left(0;-\dfrac{1}{2}\right)\right\}\)
=> 2y-1 = 0 hoặc 2y-1=1
=> y = 1/2 hoặc y = 1
k mk nha
(2y-1)^50 = 2y-1
<=>(2y-1)^50-(2y-1) = 0
<=> (2y-1).[(2y-1)^49-1] = 0
=> 2y-1 = 0 hoặc (2y-1)^49 = 1 = 1^49
=> 2y-1 = 0 hoặc 2y-1 = 1
=> y=1/2 hoặc y=1