cho biểu thức P=X/x+y+Y/y+z+Z/z+x với x,y,z là số >o
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x^2+y^2-z^2\)
\(=\left(x+y\right)^2-z^2-2xy\)
\(=\left(x+y+z\right)\left(x+y-z\right)-2xy\)
\(=-2xy\)
Ta có: \(x^2+z^2-y^2\)
\(=\left(x+z\right)^2-y^2-2xz\)
\(=\left(x+y+z\right)\left(x+z-y\right)-2xz\)
\(=-2xz\)
Ta có: \(y^2+z^2-x^2\)
\(=\left(y+z\right)^2-x^2-2yz\)
\(=\left(x+y+z\right)\left(y+z-x\right)-2yz\)
\(=-2yz\)
Ta có: \(\dfrac{xy}{x^2+y^2-z^2}+\dfrac{xz}{x^2+z^2-y^2}+\dfrac{yz}{y^2+z^2-x^2}\)
\(=\dfrac{xy}{-2xy}+\dfrac{xz}{-2xz}+\dfrac{yz}{-2yz}\)
\(=\dfrac{1}{-2}+\dfrac{1}{-2}+\dfrac{1}{-2}\)
\(=\dfrac{-3}{2}\)
Ta có:
A = ( -x + y - z) - ( y - x ) - ( x- z )
A = -x + y - z - y + x - x + z
A = ( -x + x ) + ( y - y ) - ( z - z )
A = 0 + 0 - 0 = 0
=> ĐPCM
Vậy giá trị của biểu thức A luôn dương
K ĐÚNG CHO MIK ĐÓ NHA MẤY CẬU !
https://olm.vn/hoi-dap/detail/74983431702.html. Vào mà xem bạn nha.
Ta có :\(\frac{x}{4y+z}=\frac{y}{4z+x}=\frac{z}{4x+y}=\frac{x+y+z}{4y+z+4z+x+4x+y}=\frac{x+y+z}{5\left(x+y+z\right)}=\frac{1}{5}\)
=> \(\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{y}{4z+x}=\frac{1}{5}\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{4z+x}{y}=5\end{cases}}\)
Khi đó A = 2019 - 1/5 + 5 = 2023,8
\(\frac{x}{4y+z}=\frac{y}{4z+x}=\frac{z}{4x+y}=\frac{x+y+z}{4y+z+4z+x+4x+y}=\frac{x+y+z}{5\left(x+y+z\right)}=\frac{1}{5}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{y}{4z+x}=\frac{1}{5}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{4y+z}=\frac{1}{5}\\\frac{4z+x}{y}=5\end{cases}}}\)
Khi đó \(A=2019-\frac{1}{5}+5=2013,8\)
Cho hỏi ko phải cô giáo có dc làm ko:v
Xét \(x+y+z=0\) ta có:\(x+y=-z;y+z=-x;z+x=-y\)
\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=\left(-x\right)\left(-y\right)\left(-z\right)=-xyz\)
\(\Rightarrow P=\frac{-xyz}{xyz}=-1\)
Xét \(x+y+z\ne0\) ta có:
\(\frac{x+y-z}{z}=\frac{x-y+z}{y}=\frac{-x+y+z}{x}\)
\(\Rightarrow\frac{x+y}{z}-1=\frac{x+z}{y}-1=\frac{y+z}{x}-1\)
\(\Rightarrow\frac{x+y}{z}=\frac{x+z}{y}=\frac{z+y}{x}\) ( 1 )
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\left(1\right)=\frac{x+y+x+z+z+y}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Khi đó:
\(P=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}=\frac{x+y}{z}\cdot\frac{y+z}{x}\cdot\frac{z+x}{y}=2\cdot2\cdot2=8\)
ai chơi liên quân moble,điểm danh nào
Thế câu hỏi là gì vậy bn ?