K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8

\(\left(2023\right)^2+\left(2025+2654\right)^0\)

\(2023.2023+1\)

\(=4092530\)

7 tháng 8

nguyễn thị sen chơi tính máy tính nha

\(\frac{2023\times2024+2025}{2024\times2025-2025}\)

\(=\frac{2024\times\left(2025-2\right)+2025}{2024\times2025-2025}\)

\(=\frac{2024\times2025-2023}{2024\times2025-2025}\)

1 tháng 11 2024

A = \(\dfrac{1}{2021.2022}\) + \(\dfrac{1}{2022.2023}\) + \(\dfrac{1}{2023.2024}\) + \(\dfrac{1}{2024.2025}\) - \(\dfrac{4}{2021.2025}\)

A = \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\) + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\) + \(\dfrac{1}{2023}\) - \(\dfrac{1}{2024}\) + \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\) - \(\dfrac{1}{2021}\) + \(\dfrac{1}{2025}\)

A = (\(\dfrac{1}{2021}\) - \(\dfrac{1}{2021}\))  + (\(\dfrac{1}{2022}\) - \(\dfrac{1}{2022}\)) + (\(\dfrac{1}{2023}\) - \(\dfrac{1}{2023}\)) + (\(\dfrac{1}{2024}\) - \(\dfrac{1}{2024}\)) + (\(\dfrac{1}{2025}\) - \(\dfrac{1}{2025}\))

A = 0 + 0  +0  + 0+ ... + 0

A = 0

AH
Akai Haruma
Giáo viên
6 tháng 1 2024

Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:

$(x-y+z)^2\geq 0$

$\sqrt{y^4}\geq 0$

$|1-z^3|\geq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$

Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$

$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$

Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$

$\Leftrightarrow y=0; z=1; x=-1$

 

\(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>x=1 và y=-1

\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)

8 tháng 10 2023

E kh hiểu lắm ạ="))

26 tháng 9 2023

\(\sqrt{2023+2025}=\sqrt{2.2024}\)

\(2\sqrt{2024}=\sqrt{4.2024}\)

\(\sqrt{2.2024}< \sqrt{4.2024}\)

=> \(\sqrt{2023+2025}< 2.\sqrt{2024}\)

26 tháng 9 2023

\(\sqrt{2023+2025}=\sqrt{2.2024}\\ 2\sqrt{2024}=\sqrt{4.2024}\\ \sqrt{2.2024}< \sqrt{4.2024}\\ \Rightarrow\sqrt{2023+2025< 2.\sqrt{2024}}\)

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Lời giải:
$4x^2+2y^2+2z^2-4xy-4xz+2yz-6y-10z+34=0$

$(4x^2+y^2+z^2-4xy-4xz+2yz)+y^2+z^2-6y-10z+34=0$

$(2x-y-z)^2+(y^2-6y+9)+(z^2-10z+25)=0$
$(2x-y-z)^2+(y-3)^2+(z-5)^2=0$

Vì $(2x-y-z)^2\geq 0; (y-3)^2\geq 0; (z-5)^2\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì bản thân mỗi số đó bằng $0$

$\Rightarrow 2x-y-z=y-3=z-5=0$

$\Rightarrow y=3; z=5; x=4$

Khi đó:
$P=0^{2023}+(-1)^{2025}+(5-4)^{2027}=0$

2023 mũ 2024+2024 mũ 2025+2025 mũ 2026

Xét 2023 mũ 2024

\(^{2023^{2024}}\)=\(^{2023^{4.501}}\)=(\(^{2023^4}\))\(^{^{501}}\)

Ta có:\(^{2023^4}\)tận cùng là 1

=>2023 mũ 4 tất cả mũ 501 tận cùng là 1

Xét 2024 mũ 2025

2024 mũ 2025=2024 mũ 2 .1012+1=2024 mũ 2.1012 nhân 2024=(2024 mũ 2)mũ 1012.2024

Ta có:2024  mũ 2 tận cùng là 6

=>(2024 mũ 2) tất cả mũ 1012 tận cùng là 6

=>(2024 mũ 2) tất cả mũ 1012 nhân 2024 tận cùng là4

Xét 2025 mũ 2026

2025 mũ 2026

 5 mũ bao nhiêu thì chữ số tận cùng vẫn là 5

=>2025 mũ 2026 tận cùng là 5

Vậy tổng của các chữ số tận cùng là:1+4+5=10 chia hết cho 10

=> Tổng của 2023 mũ 2024+2024 mũ 2025+2025 mũ 2026 chia hết cho 10

Đây là bài áp dụng tính chất tìm chữ số tận cùng

Chúc bn học tốt

20 tháng 10 2019

\(2023^{2024}+2024^{2025}+2025^{2026}\equiv\left(-1\right)^{1012}+\left(-1\right)^{2025}+0\equiv0\)(mod 5)

-> chia hết cho 5

Dễ dàng nhận thấy \(2023^{2024}+2025^{2026}\) là số chẵn mà \(2024^{2025}\)cũng là số chẵn nên chia hết cho 2

Do (2,5) = 1 nên chia hết cho 10

25 tháng 12 2023

Giúp mình vs ạ

26 tháng 12 2023

A = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + 9 - 10 - 11 + ... - 2023 + 2024 + 2025

Xét dãy số: 1; 2; 3; 4;..; 2025 là dãy số cách đều với khoảng cách là:

                   2  - 1  = 1

Số số hạng của dãy số trên là: ( 2025 - 1) : 1  + 1 = 2025

                  Vì 2025 : 4 = 506 dư 1 

Nhóm 4 số hạng liên tiếp của A vào nhau thì được A là tổng của 506 nhóm và 2025 khi đó

A =(1-2-3+4)+(5 - 6 - 7 + 8) +...+(2021-2022-2023+2024) + 2025

A = 0 + 0 +...+ 0 + 2025

A = 2025

           

 

          

 

TH
Thầy Hùng Olm
Manager VIP
2 tháng 5 2023

B = \(1-\dfrac{1}{2025}\)   \(A=1-\dfrac{1}{2024}\)

Vì \(\dfrac{1}{2025}< \dfrac{1}{2024}\)

Nên B>A

2 tháng 5 2023

Ta có :

\(\dfrac{2023}{2024}\)=\(\dfrac{2024-1}{2024}\)=\(\dfrac{2024}{2024}\)-\(\dfrac{1}{2024}\)=1-\(\dfrac{1}{2024}\)

\(\dfrac{2024}{2025}\)=\(\dfrac{2025-1}{2025}\)=\(\dfrac{2025}{2025}\)-\(\dfrac{1}{2025}\)=1=\(\dfrac{1}{2025}\)

Ta thấy: \(\dfrac{1}{2024}\) lớn hơn \(\dfrac{1}{2025}\)

Nên : \(\dfrac{2023}{2024}\) lớn hơn \(\dfrac{2024}{2025}\)

⇒A lớn hơn B