So sánh:
\(3^0+3^1+3^2+\cdots+3^{100}\) và \(3^{101}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) \(A=1+2+2^2+2^3+...+2^{100}\) \(B=2^{201}\)
\(2A=2\left(1+2+2^2+2^3+...+2^{100}\right)\)
\(2A=2+2^2+2^3+2^4+...+2^{201}\)
\(2A-A=\left(2+2^2+2^3+2^4+...+2^{201}\right)-\left(1+2+2^2+2^3+...+2^{100}\right)\)
\(2A-A=2^{101}-1\)
\(A=2^{201}-1\)
Ta có 2201 > 2201 - 1 => B > A => 2201 > 1 + 2 + 22 + 23 +...+ 1100

\(M=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3M=3^2+3^3+3^4+...+3^{100}+3^{101}\)
\(3M-M=\left(3^2+3^3+3^4+...+3^{100}+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(2M=3^{101}-3\)
\(\Rightarrow M=\frac{3^{101}-3}{2}< 3^{101}\)
M = 31 + 32 + ... + 3100
=> 3M = 32 + 33 + ... + 3101
=> 3M - M = ( 32 + 33 + ... + 3101 ) - ( 31 + 32 + ... + 3100 )
2M = 3101 - 31
=> M = \(\frac{3^{101}-1}{2}\)< 3101 = M2
Vậy M1 < M2

-5<0<1/63
-101/-100=101/100>1>200/201
1/17>1/27>3/83
135/136=1+(1/136)>1+(1/137)=136/137
-371/459<0<-371/-459
267/-268>-1>-1347/1343
-13/38<-1/3<29/-88
-18/31=\(\frac{-18.10101}{31.10101}=\frac{-181818}{313131}\)

Tham Khảo:
a: 0. ( 4 ) = \(\dfrac{4}{9}\) = \(\dfrac{16}{36}\)<\(\dfrac{27}{36}\)=\(\dfrac{3}{4}\)
d: -0,2<-0,1(9)
a, 3/4 > 0,(4)
b, 3,21(13) > 3,(2)
c, 2,3(496) < 47/20
d, -0,2 < -0,1(9)
<,sai thì cho mik xin lỗi nha!
\(A=3^0+3^1+3^2+\cdots+3^{100}\)
\(3A=3^1+3^2+3^3+\cdots+3^{101}\)
\(3A-A=\left(3^1+3^2+\cdots+3^{101}\right)-\left(3^0+3^1+\cdots+3^{100}\right)\)
\(2A=3^{101}-3^0=3^{101}-1\)
\(A=\frac{3^{101}-1}{2}<3^{101}\)
Vậy \(3^0+3^1+3^2+\cdots+3^{100}<3^{101}\)