K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

Tham khảo: Bài 4.8 trang 211 Sách bài tập Đại số và giải tích 11: Chứng minh rằng với |x| rất bé so với

2 tháng 11 2021

Tham khảo cách giải:

Đặt \(x\left(y\right)=\sqrt{a^2+x}\) ta có:

\(y'\left(x\right)=\dfrac{\left(a^2+x\right)'}{2\sqrt{a^2+x}}=\dfrac{1}{2\sqrt{a^2+x}}\)

Từ đó:

\(\Delta y=y\left(x\right)-y\left(0\right)\approx y'\left(0\right)x\)

\(\Rightarrow\sqrt{a^2+x}-\sqrt{a^2+0}\approx\dfrac{1}{2\sqrt{a^2+0}}x\)

\(\Rightarrow\sqrt{a^2+x}-a\approx\dfrac{x}{2a}\)

\(\Rightarrow\sqrt{a^2+x}\approx a+\dfrac{x}{2a}\)

Áp dụng :

\(\sqrt{146}=\sqrt{12^2+2}\)

\(\approx12+\dfrac{2}{2.12}\approx12,0833\)

31 tháng 7 2015

Bạn xem lại đề được không? Mình cảm giác 32 phải là 33 !

26 tháng 11 2016

Ta có 2*7^n là số chẵn suy ra 2*7^n +1 chia hết cho 2+1=3

26 tháng 11 2016

tại sao bạ ra như thế

10 tháng 10 2021

giúp mình với mình chuẩn bị phải nộp bài rồi T~T 

10 tháng 10 2021

\(B=2+2^2+2^3+...+2^{60}\)

\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{58}\right)⋮7\)

Ta có: S = \(\dfrac{1}{3}+\dfrac{3}{3.7}+\dfrac{5}{3.7.11}+...+\dfrac{2n+1}{3.7.11...\left(4n+3\right)}\)

⇒ 2S = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+2}{3.7.11...\left(4n+3\right)}\)

⇒ 2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+3}{3.7.11...\left(4n+3\right)}\)

Đến đây nó sẽ rút gọn liên tục và sau nhiều lần rút gọn ta có:

2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+\dfrac{1}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{11}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{1}{3.7}\) = \(\dfrac{2}{3}+\dfrac{7}{3.7}=\dfrac{2}{3}+\dfrac{1}{3}=1\)

Suy ra 2S < 1 ⇒ S < \(\dfrac{1}{2}\)(đpcm)

Bài 1: 

Ta có: \(\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{6}-1\right)\left(\dfrac{1}{10}-1\right)\cdot...\cdot\left(\dfrac{1}{45}-1\right)\)

\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot...\cdot\dfrac{-44}{45}\)

\(=\dfrac{-2}{3}\cdot\dfrac{-5}{6}\cdot\dfrac{-9}{10}\cdot\dfrac{-14}{15}\cdot\dfrac{-20}{21}\cdot\dfrac{-27}{28}\cdot\dfrac{-35}{36}\cdot\dfrac{-44}{45}\)

\(=\dfrac{11}{27}\)

NA
Ngoc Anh Thai
Giáo viên
24 tháng 3 2021

Câu 2: 

B=1+1/2+1/3+....+1/2010

 =(1+1/2010)+(1/2+1/2009)+(1/3+1/2008)+...(1/1005+1/1006)

 = 2011/2010+2011/2.2009+2011/3.2008+...+2011/1005.1006

 =2011.(1/2010+.....1/1005.1006)

Vậy B có tử số chia hết cho 2011 (đpcm).

Câu 3:

 \(P=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}....\dfrac{98}{99}\\ P< \dfrac{3}{4}.\dfrac{5}{6}.\dfrac{6}{7}....\dfrac{99}{100}\\ P^2< \dfrac{2}{100}\)

 \(\dfrac{2}{100}=\dfrac{1}{50}< \dfrac{1}{49}\\ \Rightarrow P< \dfrac{1}{7}\)

17 tháng 4 2024

AH
Akai Haruma
Giáo viên
3 tháng 12 2023

Lời giải:
\(10^{100}+10^{1000}+7=(10^{100}-1)+(10^{1000}-1)+9\\ =\underbrace{999...9}_{100}+\underbrace{999...9}_{1000}+9\)

Tổng này chia hết cho 9 do 3 số hạng đều chia hết cho 9.

14 tháng 5 2018

diêu anh ê mày mới lập à

14 tháng 5 2018

tự làm ko hỏi nhiều bài dễ

24 tháng 10 2020

Ai trả lời nhanh đúng,mk link ạ!

24 tháng 10 2020

Chứng minh chia hết cho 3

A = 2 + 22 + 23 + ... + 2100

= ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 299 + 2100 )

= 2( 1 + 2 ) + 23( 1 + 2 ) + ... + 299( 1 + 2 )

= 2.3 + 23.3 + ... + 299.3

= 3( 2 + 23 + ... + 299 ) chia hết cho 3 ( đpcm )

Chứng minh chia hết cho 7

A = 2 + 22 + 23 + ... + 2100

= ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 298 + 299 + 2100 )

= 2( 1 + 2 +22 ) + 24( 1 + 2 + 22 ) + ... + 298( 1 + 2 + 22 )

= 2.7 + 24.7 + ... + 298.7

= 7( 2 + 24 + ... + 298 ) chia hết cho 7 ( đpcm )

Chứng minh chia hết cho 15

A = 2 + 22 + 23 + ... + 2100

= ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + ... + ( 297 + 298 + 299 + 2100 )

= 2( 1 + 2 + 22 + 23 ) + 25( 1 + 2 + 22 + 23 ) + ... + 297( 1 + 2 + 22 + 23 )

= 2.15 + 25.15 + ... + 297.15

= 15( 2 + 25 + ... + 297 ) chia hết cho 15 ( đpcm )