K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

\(M=\frac{2x+y+z-15}{x}+\frac{x+2y+z-15}{y}+\frac{x+y+2z-15}{z}\)

\(M-3=\frac{x+y+z-15}{x}+\frac{x+y+z-15}{y}+\frac{x+y+z-15}{z}\)

\(M-3=\left(x+y+z-15\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Rightarrow M\ge\left(x+y+z-15\right)\cdot\frac{9}{x+y+z}+3=\frac{3}{4}\)

\("="\Leftrightarrow x=y=z=4\)

26 tháng 1 2018

nhận ra là bài này sai đề :)))

nhận ra là bài này sai đề :)))

26 tháng 1 2018

Bài 1

M=2x+y+z−15x+x+2y+z−15y+x+y+2z−15z

M=x+12−15x+y+12−15y+z+12−15z

M=x−3x+y−3y+z−3z

M=1−3x+1−3y+1−3z

M=3−(3x+3y+3z)

M=3−3(1x+1y+1z)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

⇒1x+1y+1z≥(1+1+1)2x+y+z=9x+y+z=34

⇒3(1x+1y+1z)≥94

⇒3−3(1x+1y+1z)≤34

⇔M≤34

Vậy M max=34

Dấu " = " xảy ra khi x=y=z=4

Bai nay tim GTLN moi dung nha

Đề có sai không bạn?

ko làm đc thì chắc là sai thôi bạn hiha

AH
Akai Haruma
Giáo viên
5 tháng 3 2018

Thay \(x+y+z=12\) thì:

\(M=\frac{x+12-15}{x}+\frac{y+12-15}{y}+\frac{z+12-15}{z}\)

\(M=\frac{x-3}{x}+\frac{y-3}{y}+\frac{z-3}{z}=1-\frac{3}{x}+1-\frac{3}{y}+1-\frac{3}{z}\)

\(M=3-3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Với điều kiện trên của $x,y,z$ thì biểu thức M có max thôi em nhé.

5 tháng 3 2018

\(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-15}{z}\)

\(M=\dfrac{x+\left(x+y+z\right)-15}{x}+\dfrac{y+\left(x+y+z\right)-15}{y}+\dfrac{z+\left(x+y+z\right)-15}{z}\)\(M=\dfrac{x-3}{x}+\dfrac{y-3}{y}+\dfrac{z-3}{z}\)

\(\dfrac{3-M}{3}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\) cần tìm max \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=N\)

c/m không tồn tại N_max

trong 3 số (x;y;z) chỉ cần một số tiến đến 0 ; N-->vô cùng

12 tháng 9 2023

Ta bắt đầu bằng việc giả sử một giá trị ban đầu cho x, y và z, sau đó lặp lại quá trình tính toán cho đến khi đạt được độ chính xác mong muốn.

Ví dụ, giả sử ta chọn x = 1, y = 1 và z = 1 làm giá trị ban đầu. Sau đó, ta thực hiện các bước sau:

Bước 1: Tính toán giá trị mới cho x, y và z bằng cách sử dụng các phương trình đã cho: x_new = (2y - 1) / sqrt(y) y_new = (2z - 1) / sqrt(z) z_new = (2*x - 1) / sqrt(x)

Bước 2: Kiểm tra độ chính xác của giá trị mới so với giá trị cũ. Nếu đạt được độ chính xác mong muốn, ta dừng lại. Nếu không, ta lặp lại bước 1 với giá trị mới của x, y và z.

Tiếp tục lặp lại quá trình trên cho đến khi đạt được độ chính xác mong muốn. Khi đó, ta sẽ có giá trị x, y và z tương ứng là nghiệm của hệ phương trình đã cho.

14 tháng 9 2023

Cảm ơn bạn nha~~~

2 tháng 1 2017

\(\frac{2x-y}{5}=\frac{2z}{15}\)\(\frac{x+z}{2y}\)

Từ x + z = 2y ta có:

x – 2y + z = 0 hay 2x – 4y + 2z = 0 hay 2x – y – 3y + 2z = 0 hay 2x – y = 3y – 2z

Vậy nếu: \(\frac{2x-y}{5}=\frac{3y-2z}{15}\) thì: 2x – y = 3y – 2z = 0 (vì 5 \(\ne\) 15.)

Từ 2x – y = 0 suy ra: x = \(\frac{1}{2}y\)

Từ 3y – 2z = 0 và x + z = 2y. \(\Rightarrow\) x + z + y – 2z = 0 hay \(\frac{1}{2}y\)+ y – z = 0

hay \(\frac{3}{2}y\) - z = 0 hay y = \(\frac{2}{3}z\). suy ra: x = \(\frac{1}{3}z\).

Vậy các giá trị x, y, z cần tìm là: {x = \(\frac{1}{3}z\); y = \(\frac{2}{3}z\) ; với z \(\in\) R }
hoặc {x = \(\frac{1}{2}y\); y \(\in\) R; z = \(\frac{3}{2}y\)} hoặc {x \(\in\) R; y = 2x; z = 3x}

11 tháng 2 2020

nhìn tui làm nè

2x-y/5=3y-2z/15vã+z=2y

....................

Mà tui hỏi có ai chơi Free Fire ai chơi để id dưới bình luận

AH
Akai Haruma
Giáo viên
2 tháng 12 2019

Bạn tham khảo lời giải tại link sau:

Câu hỏi của Thảo Phương - Toán lớp 9 | Học trực tuyến