K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 giờ trước (11:38)

Bài 1:

\(\frac{a}{b}=\frac{c}{d}\)

\(\frac{a}{b}+2=\frac{c}{d}+2\)

\(\frac{a+2b}{b}\) = \(\frac{c+2d}{d}\) (đpcm)

7 giờ trước (19:17)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

=>a=bk; c=dk

\(\frac{a+2b}{b}=\frac{bk+2b}{b}=\frac{b\left(k+2\right)}{b}=k+2\)

\(\frac{c+2d}{d}=\frac{dk+2d}{d}=\frac{d\left(k+2\right)}{d}=k+2\)

Do đó: \(\frac{a+2b}{b}=\frac{c+2d}{d}\)

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{3a+2b}{a}=\dfrac{3bk+2b}{bk}=\dfrac{3k+2}{k}\)

\(\dfrac{3c+2d}{c}=\dfrac{3dk+2d}{dk}=\dfrac{3k+2}{k}\)

Do đó: \(\dfrac{3a+2b}{a}=\dfrac{3c+2d}{c}\)

b: \(\dfrac{2a-3b}{b}=\dfrac{2bk-3b}{b}=2k-3\)

\(\dfrac{2c-3d}{d}=\dfrac{2dk-3d}{d}=2k-3\)

Do đó: \(\dfrac{2a-3b}{b}=\dfrac{2c-3d}{d}\)

c: \(\dfrac{a}{a-2b}=\dfrac{bk}{bk-2b}=\dfrac{k}{k-2}\)

\(\dfrac{c}{c-2d}=\dfrac{dk}{dk-2d}=\dfrac{k}{k-2}\)

Do đó: \(\dfrac{a}{a-2b}=\dfrac{c}{c-2d}\)

27 tháng 8 2023

thank you

 

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

20 tháng 10 2019

Theo bài ra ta có : 

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)

\(\Rightarrow\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)

\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

\(\Rightarrow\frac{0}{a}=\frac{0}{b}=\frac{0}{c}=\frac{0}{d}\)

\(\Rightarrow\orbr{\begin{cases}a=b=c=d\\a\ne b\ne c\ne d\end{cases}}\)(loại) 

Nếu a + b + c + d \(\ne\)0

=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\)

=> a = b = c = d (đpcm)

24 tháng 10 2018

giả sử \(\frac{a}{b}=\frac{c}{d}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{2b}{2d}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{2a+b}{2c+d}=\frac{a-2b}{c-2d}\)

\(=>\frac{a}{c}=\frac{b}{d}=\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}\)

vậy \(\frac{2a+b}{a-2b}=\frac{2c+d}{c-2d}=>\frac{a}{b}=\frac{c}{d}\left(dpcm\right)\)

p/s: ko chắc lắm mong là ko sai =]

24 tháng 10 2018

Giả sử a/b=c/d 

Đặt a/b=c/d=k=>a=bk;c=dk

2a+b/a-2b=2bk+b/bk-2b=b(2k+1)/b(k-2)=2k+1/k-2

2c+d/c-2d=2dk+d/dk-2d=d(2k+1)/d(k-2)=2k+1/k-2

=>2a+b/a-2b=2c+d/c-2d

Điều giả sử là đúng

10 tháng 8 2017

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(\Rightarrow\dfrac{a+2b}{c+2d}=\dfrac{bk+2b}{dk+2d}=\dfrac{b\left(k+2\right)}{d\left(k+2\right)}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{a-2b}{c-2d}=\dfrac{bk-2b}{dk-2d}=\dfrac{b\left(k-2\right)}{d\left(k-2\right)}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{a+2b}{c+2d}=\dfrac{a-2b}{c-2d}\rightarrowđpcm\)

10 tháng 8 2017

ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow4ad=4bc\Leftrightarrow2ad+2ad=2bc+2bc\)

\(\Leftrightarrow2ad-2bc=2bc-2ad\Leftrightarrow ac+2ad-2bc-4bd=ac+2bc-2ad-4bd\)

\(\Leftrightarrow\left(c+2d\right)\left(a-2b\right)=\left(a+2b\right)\left(c-2d\right)\Leftrightarrow\dfrac{a+2b}{c+2d}=\dfrac{a-2b}{c-2d}\left(đpcm\right)\)

9 tháng 11 2017

Đặt a/b=c/d=k suy ra a=bk ; c=dk

Có : (c+2d).(a+b) = (dk+2d).(bk+b)

                            = (d(2+k)).(b(k+1))     

                            = d.b.(k+1).(k+2)     <1>

       (c+d).(a+2b) = (dk+d).(bk+2b)

                           = (d(k+1)).(b(k+2))

                           = d.b.(k+1).(k+2)     <2>

Từ <1> và <2> suy ra (c+2d).(a+b) = (c+d).(a+2b)

4 tháng 10 2017

\(\dfrac{a+b}{c+d}=\dfrac{a-2b}{c-2d}\)

Suy ra: \(\left(a+b\right)\left(c-2d\right)=\left(c+d\right)\left(a-2b\right)\)

\(\Rightarrow a\left(c-2d\right)+b\left(c-2d\right)=c\left(a-2b\right)+d\left(a-2b\right)\)

\(\Rightarrow ac-2ad+bc-2bd=ac-2bc+ad-2bd\)

\(\Rightarrow ac-2ad+bc=ac-2bc+ad\)

\(\Rightarrow2ad+bc=2bc+ad\)

\(\Rightarrow2ad-ad=2bc-bc\)

\(\Rightarrow ad=bc\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\left(đpcm\right)\)

DD
22 tháng 6 2021

\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{a+b}{c+d}=\frac{a-2b}{c-2d}=\frac{a+b-\left(a-2b\right)}{c+d-\left(c-2d\right)}=\frac{3b}{3d}=\frac{b}{d}\)

\(\frac{a+b}{c+d}=\frac{b}{d}=\frac{a+b-b}{c+d-d}=\frac{a}{c}\)

Suy ra \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\).