K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lời giải:

Xét hai biểu thức \(\mid a + b \mid\)\(\mid a - b \mid\). Ta sẽ chứng minh tổng của chúng là số chẵn trong mọi trường hợp.

Ta xét hai trường hợp:

Trường hợp 1: \(a\)\(b\) cùng chẵn hoặc cùng lẻ.

Khi đó, \(a + b\)\(a - b\) đều là số chẵn.
Giá trị tuyệt đối của số chẵn vẫn là số chẵn.
Suy ra \(\mid a + b \mid\)\(\mid a - b \mid\) đều chẵn.
Tổng hai số chẵn là số chẵn.
Vậy \(\mid a + b \mid + \mid a - b \mid\) là số chẵn.

Trường hợp 2: Một trong hai số là chẵn, số còn lại là lẻ.

Khi đó, \(a + b\)\(a - b\) đều là số lẻ.
Giá trị tuyệt đối của số lẻ vẫn là số lẻ.
Tổng hai số lẻ là số chẵn.
Vậy \(\mid a + b \mid + \mid a - b \mid\) là số chẵn.

Kết luận:\(a , b\) là số nguyên bất kỳ, thì \(\mid a + b \mid + \mid a - b \mid\) luôn là số chẵn.

25 tháng 7
Ta xét các trường hợp sau:
  • Trường hợp 1\(a \geq 0\) và \(b \geq 0\). Khi đó: \(\mid a + b \mid + \mid a - b \mid = a + b + \mid a - b \mid\)
    • Nếu \(a \geq b\), thì \(\mid a + b \mid + \mid a - b \mid = a + b + a - b = 2 a\). Vì \(a\) là số nguyên, \(2 a\) là số chẵn.
    • Nếu \(a < b\), thì \(\mid a + b \mid + \mid a - b \mid = a + b + b - a = 2 b\). Vì \(b\) là số nguyên, \(2 b\) là số chẵn.
  • Trường hợp 2\(a < 0\) và \(b < 0\). Đặt \(a^{'} = - a\) và \(b^{'} = - b\), ta có \(a^{'} > 0\) và \(b^{'} > 0\). Khi đó: \(\mid a + b \mid + \mid a - b \mid = \mid - a^{'} - b^{'} \mid + \mid - a^{'} + b^{'} \mid = \mid a^{'} + b^{'} \mid + \mid b^{'} - a^{'} \mid\)
    • Nếu \(b^{'} \geq a^{'}\), thì \(\mid a^{'} + b^{'} \mid + \mid b^{'} - a^{'} \mid = a^{'} + b^{'} + b^{'} - a^{'} = 2 b^{'}\). Vì \(b^{'}\) là số nguyên dương, \(2 b^{'}\) là số chẵn.
    • Nếu \(b^{'} < a^{'}\), thì \(\mid a^{'} + b^{'} \mid + \mid b^{'} - a^{'} \mid = a^{'} + b^{'} + a^{'} - b^{'} = 2 a^{'}\). Vì \(a^{'}\) là số nguyên dương, \(2 a^{'}\) là số chẵn.
  • Trường hợp 3\(a \geq 0\) và \(b < 0\). Đặt \(b^{'} = - b\), ta có \(b^{'} > 0\). Khi đó: \(\mid a + b \mid + \mid a - b \mid = \mid a - b^{'} \mid + \mid a + b^{'} \mid\)
    • Nếu \(a \geq b^{'}\), thì \(\mid a - b^{'} \mid + \mid a + b^{'} \mid = a - b^{'} + a + b^{'} = 2 a\). Vì \(a\) là số nguyên, \(2 a\) là số chẵn.
    • Nếu \(a < b^{'}\), thì \(\mid a - b^{'} \mid + \mid a + b^{'} \mid = b^{'} - a + a + b^{'} = 2 b^{'}\). Vì \(b^{'}\) là số nguyên dương, \(2 b^{'}\) là số chẵn.
  • Trường hợp 4\(a < 0\) và \(b \geq 0\). Đặt \(a^{'} = - a\), ta có \(a^{'} > 0\). Khi đó: \(\mid a + b \mid + \mid a - b \mid = \mid - a^{'} + b \mid + \mid - a^{'} - b \mid = \mid b - a^{'} \mid + \mid a^{'} + b \mid\)
    • Nếu \(b \geq a^{'}\), thì \(\mid b - a^{'} \mid + \mid a^{'} + b \mid = b - a^{'} + a^{'} + b = 2 b\). Vì \(b\) là số nguyên, \(2 b\) là số chẵn.
    • Nếu \(b < a^{'}\), thì \(\mid b - a^{'} \mid + \mid a^{'} + b \mid = a^{'} - b + a^{'} + b = 2 a^{'}\). Vì \(a^{'}\) là số nguyên dương, \(2 a^{'}\) là số chẵn.
Vậy trong mọi trường hợp, |a+b| + |a-b| luôn là số chẵn.
9 tháng 11 2023

a,a=12;b=6

b,a=8;b=4

c,a=18;b=18

4 tháng 11 2016

a)  120 chia hết cho a

     300 chia hết cho a

     420 chia hết cho a

=> a \(\in\)ƯC(120,300.420)

Ta có:

120 = 23.3.5

300 = 22.3.52

420 = 22.3.5.7

UCLN(120,300,420) = 22.3.5 = 60

UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}

Vì a > 20 nên a = {30;60}

b) 56 chia hết cho a

    560 chia hết cho a

   5600 chia hết cho a

=>a \(\in\)ƯC(56,560,5600)

Ta có:

56 = 23.7

560 = 24.5.7

5600 = 25.52.7

UCLN(56,560,5600) = 23.7 = 56

UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}

Vì a lớn nhất nên a = 56

16 tháng 12 2016

dễ vãi

 

15 tháng 10 2021

Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó

A = 200*

Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0

NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.

Như vậy, đề sai.

26 tháng 3 2024
Dudijdiddidijdjdjdjdj
26 tháng 3 2024

5 tháng 11 2016

a ,bằng 70          b, bằng 60              c, bảng 35

5 tháng 11 2016

a) Số a là 70

b)Số a là 60

c)Số a là 35