K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: EF//BC

AH⊥BC

Do đó: AH⊥FE tại E

=>ΔAEF vuông tại E

Xét tứ giác BEKA có \(\hat{BEK}+\hat{BAK}=90^0+90^0=180^0\)

nên BEKA là tứ giác nội tiếp

=>\(\hat{EBK}=\hat{EAK}\)

=>\(\hat{EBK}=\hat{HAC}\)

\(\hat{HAC}=\hat{HBA}\left(=90^0-\hat{HAB}\right)\)

\(\hat{HBA}=\hat{AFE}\) (hai góc đồng vị, CB//EF)

nên \(\hat{EBK}=\hat{AFE}\)

Xét ΔEBK vuông tại E và ΔEFA vuông tại E có

\(\hat{EBK}=\hat{EFA}\)

Do đó: ΔEBK~ΔEFA

=>\(\frac{BK}{FA}=\frac{BE}{FE}\)

=>\(BK\cdot FE=BE\cdot FA\)

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABH}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABH}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

a: Xét ΔHAB vuông tại H và ΔHAD vuông tại H có

HA chung

HB=HD

Do đó: ΔHAB=ΔHAD

b: Xét ΔCAD có \(\widehat{CDA}>90^0\)

nên CA>CD

8 tháng 3 2022

a) -Xét △AIC và △DIB có:

\(\widehat{IAC}=\widehat{IDB}=90^0\)

\(\widehat{AIC}=\widehat{DIB}\) (đối đỉnh)

\(\Rightarrow\)△AIC∼△DIB (g-g).

\(\Rightarrow\dfrac{AI}{DI}=\dfrac{CI}{BI}\) nên \(\dfrac{AI}{CI}=\dfrac{DI}{BI}\)

b) -Xét △AID và △CIB có:

\(\widehat{AID}=\widehat{CIB}\) (đối đỉnh)

\(\dfrac{AI}{CI}=\dfrac{DI}{BI}\)(cmt)

\(\Rightarrow\)△AID∼△CIB (c-g-c) nên \(\widehat{ABC}=\widehat{ADC}\)

c) -Có: \(\widehat{IAD}=\widehat{ICB}\) (△AID∼△CIB)

\(\widehat{ICA}=\widehat{IBD}\)(△AIC∼△DIB)

Mà \(\widehat{ICB}=\widehat{ICA}\) (CI là tia phân giác của \(\widehat{ACB}\))

\(\Rightarrow\widehat{IAD}=\widehat{IBD}\)
\(\Rightarrow\)△ADB cân tại D nên \(DA=DB\)