giải giúp mình từ câu 1 đến câu 14 nha
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
DT
1

Những câu hỏi liên quan
PT
1

DT
Đỗ Thanh Hải
CTVVIP
7 tháng 5 2021
8 B
Cái này nói đến một vật được nhắc đến lần đầu
9 D
wild with excitement = extremely excited
10 D
be helpful in : hữu ích
11 D
so sánh nhất : the + adj (so sánh nhất)
12 C
đại từ quan hệ thay thế cho cả mệnh đề
13 B
encourage sb to V : động viên ai làm gì
14 B
sunrise : mặt trời mọc
15 D
16 C
so as to V : để làm gì
17 C
18 B
A
2


DT
Đỗ Thanh Hải
CTVVIP
16 tháng 5 2021
làm thì đc nhưng mà giải thích hơi khó....tại cái này phải dựa vào tư duy của mình nữa bởi cái dạng này nó biến động

T1
2

DT
22 tháng 2 2022
21. didn’t go
22. isn’t painting
23. aren’t planting
24. Are they making
25. is repairing
26. is taking
27. is explaining
28. is studying
29. tries/ don’t think
30. passes
HD
2

1: ĐKXĐ: x∉{0;-1}
Ta có: \(\frac{x-1}{x}+\frac{1-2x}{x\left(x+1\right)}=\frac{1}{x+1}\)
=>\(\frac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}+\frac{1-2x}{x\left(x+1\right)}=\frac{x}{x\left(x+1\right)}\)
=>\(\left(x-1\right)\left(x+1\right)+1-2x=x\)
=>\(x^2-1+1-2x-x=0\)
=>\(x^2-3x=0\)
=>x(x-3)=0
=>\(\left[\begin{array}{l}x=0\left(loại\right)\\ x=3\left(nhận\right)\end{array}\right.\)
2: ĐKXĐ: x∉{0;4}
ta có: \(\frac{5}{x}+\frac{x-3}{x-4}=\frac{x^2-10}{x\left(x-4\right)}\)
=>\(\frac{5\left(x-4\right)+x\left(x-3\right)}{x\left(x-4\right)}=\frac{x^2-10}{x\left(x-4\right)}\)
=>\(5\left(x-4\right)+x\left(x-3\right)=x^2-10\)
=>\(5x-20+x^2-3x=x^2-10\)
=>2x-20=-10
=>2x=10
=>x=5(nhận)
3: ĐKXĐ: x∉{0;3}
Ta có: \(\frac{x+3}{x-3}=\frac{3}{x^2-3x}+\frac{1}{x}\)
=>\(\frac{x+3}{x-3}=\frac{3}{x\left(x-3\right)}+\frac{1}{x}\)
=>\(\frac{x\left(x+3\right)}{x\left(x-3\right)}=\frac{3}{x\left(x-3\right)}+\frac{x-3}{x\left(x-3\right)}\)
=>\(x\left(x+3\right)=3+x-3=x\)
=>\(x^2+3x-x=0\)
=>\(x^2+2x=0\)
=>x(x+2)=0
=>\(\left[\begin{array}{l}x=0\\ x+2=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(loại\right)\\ x=-2\left(nhận\right)\end{array}\right.\)
4: ĐKXĐ: x∉{0;3}
Ta có: \(\frac{3}{x^2-3x}+\frac{1}{x}=\frac{x+4}{x-3}\)
=>\(\frac{3}{x\left(x-3\right)}+\frac{1}{x}=\frac{x+4}{x-3}\)
=>\(\frac{3+x-3}{x\left(x-3\right)}=\frac{x\left(x+4\right)}{x\left(x-3\right)}\)
=>\(x=x\left(x+4\right)\)
=>x(x+4)-x=0
=>x(x+3)=0
=>\(\left[\begin{array}{l}x=0\left(loại\right)\\ x=-3\left(nhận\right)\end{array}\right.\)
5: ĐKXĐ: x∉{0;4}
ta có: \(\frac{x+4}{x-4}-\frac{1}{x}=\frac{4}{x^2-4x}\)
=>\(\frac{x+4}{x-4}-\frac{1}{x}=\frac{4}{x\left(x-4\right)}\)
=>\(\frac{x\left(x+4\right)-\left(x-4\right)}{x\left(x-4\right)}=\frac{4}{x\left(x-4\right)}\)
=>\(x\left(x+4\right)-x+4=4\)
=>\(x^2+4x-x=0\)
=>\(x^2+3x=0\)
=>x(x+3)=0
=>\(\left[\begin{array}{l}x=0\\ x+3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(loại\right)\\ x=-3\left(nhận\right)\end{array}\right.\)
6: ĐKXĐ: x∉{3;-1}
Ta có: \(\frac{x}{x-3}+\frac{x}{x+1}=\frac{2x^2-4}{\left(x-3\right)\left(x+1\right)}\)
=>\(\frac{x\left(x+1\right)+x\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}=\frac{2x^2-4}{\left(x-3\right)\left(x+1\right)}\)
=>\(x\left(x+1\right)+x\left(x-3\right)=2x^2-4\)
=>\(x^2+x+x^2-3x=2x^2-4\)
=>-2x=-4
=>x=2(nhận)
7: ĐKXĐ: x∉{0;2}
ta có: \(\frac{x+2}{x-2}-\frac{6}{x}=\frac{9}{x^2-2x}\)
=>\(\frac{x+2}{x-2}-\frac{6}{x}=\frac{9}{x\left(x-2\right)}\)
=>\(\frac{x\left(x+2\right)-6\left(x-2\right)}{x\left(x-2\right)}=\frac{9}{x\left(x-2\right)}\)
=>x(x+2)-6(x-2)=9
=>\(x^2+2x-6x+12-9=0\)
=>\(x^2-4x+3=0\)
=>(x-1)(x-3)=0
=>\(\left[\begin{array}{l}x-1=0\\ x-3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=1\left(nhận\right)\\ x=3\left(nhận\right)\end{array}\right.\)
8: ĐKXĐ: x∉{0;2}
ta có: \(\frac{2}{x^2-2x}+\frac{1}{x}=\frac{x+2}{x-2}\)
=>\(\frac{2}{x\left(x-2\right)}+\frac{1}{x}=\frac{x+2}{x-2}\)
=>\(\frac{2+x-2}{x\left(x-2\right)}=\frac{x\left(x+2\right)}{x\left(x-2\right)}\)
=>x(x+2)=x
=>x(x+2)-x=0
=>x(x+2-1)=0
=>x(x+1)=0
=>\(\left[\begin{array}{l}x=0\left(loại\right)\\ x=-1\left(nhận\right)\end{array}\right.\)
9: ĐKXĐ: x∉{0;-5}
\(\frac{x-5}{x}+\frac{x-3}{x+5}=\frac{x-25}{x^2+5x}\)
=>\(\frac{x-5}{x}+\frac{x-3}{x+5}=\frac{x-25}{x\left(x+5\right)}\)
=>\(\frac{\left(x-5\right)\left(x+5\right)+x\left(x-3\right)}{x\left(x+5\right)}=\frac{x-25}{x\left(x+5\right)}\)
=>\(\left(x-5\right)\left(x+5\right)+x\left(x-3\right)=x-25\)
=>\(x^2-25+x^2-3x-x+25=0\)
=>\(2x^2-4x=0\)
=>2x(x-2)=0
=>x(x-2)=0
=>\(\left[\begin{array}{l}x=0\left(loại\right)\\ x=2\left(nhận\right)\end{array}\right.\)
10:
ĐKXĐ: x∉{0;6}
\(\frac{x+6}{x-6}-\frac{6}{x^2-6x}=\frac{1}{x}\)
=>\(\frac{x+6}{x-6}-\frac{6}{x\left(x-6\right)}=\frac{1}{x}\)
=>\(\frac{x\left(x+6\right)}{x\left(x-6\right)}-\frac{6}{x\left(x-6\right)}=\frac{x-6}{x\left(x-6\right)}\)
=>\(x^2+6x-6=x-6\)
=>\(x^2+5x=0\)
=>x(x+5)=0
=>\(\left[\begin{array}{l}x=0\\ x+5=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(loại\right)\\ x=-5\left(nhận\right)\end{array}\right.\)
11: ĐKXĐ: x∉{0;7}
Ta có: \(\frac{x+7}{x-7}-\frac{7}{x^2-7x}=\frac{1}{x}\)
=>\(\frac{x+7}{x-7}-\frac{7}{x\left(x-7\right)}=\frac{1}{x}\)
=>\(\frac{x\left(x+7\right)-7}{x\left(x-7\right)}=\frac{x-7}{x\left(x-7\right)}\)
=>x(x+7)-7=x-7
=>x(x+7)=x
=>x(x+7)-x=0
=>x(x+6)=0
=>\(\left[\begin{array}{l}x=0\\ x+6=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=0\left(loại\right)\\ x=-6\left(nhận\right)\end{array}\right.\)
12: ĐKXĐ: x∉{0;-4}
ta có: \(\frac{x+5}{x}-\frac{x-7}{x+4}=\frac{x^2+35}{x^2+4x}\)
=>\(\frac{x+5}{x}-\frac{x-7}{x+4}=\frac{x^2+35}{x\left(x+4\right)}\)
=>\(\frac{\left(x+5\right)\left(x+4\right)-x\left(x-7\right)}{x\left(x+4\right)}=\frac{x^2+35}{x\left(x+4\right)}\)
=>\(\left(x+5\right)\left(x+4\right)-x\left(x-7\right)=x^2+35\)
=>\(x^2+9x+20-x^2+7x=x^2+35\)
=>\(x^2+35=16x+20\)
=>\(x^2-16x+15=0\)
=>(x-1)(x-15)=0
=>\(\left[\begin{array}{l}x-1=0\\ x-15=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x...