Bài 37: Tìm số nguyên x và n thỏa mãn , biết
(x-7).(x+3)<0
(2n-3).(n+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\left|x-1\right|< 3\)
Mà \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow\left|x-1\right|\in\left\{0;1;2\right\}\\ \Rightarrow x-1\in\left\{0;1;-1;2;-2\right\}\\ \Rightarrow x\in\left\{1;2;0;3;-1\right\}\)
Vậy có 5 giá trị nguyên của x thỏa mãn đề bài. \(x\in\left\{x\in Z|-2< x< 4\right\}\)
Ta có: |x-1|<3
nên \(x-1\in\left\{-2;-1;0;1;2\right\}\)
hay có 5 số nguyên x thỏa mãn điều kiện |x-1|<3
\(\dfrac{-19}{23}< \dfrac{7}{x}< \dfrac{-19}{25}\\ \Leftrightarrow7:\dfrac{-19}{23}< x< 7:\dfrac{-19}{25}\\ \Leftrightarrow\dfrac{-161}{19}< x< \dfrac{-175}{19}\\ \Leftrightarrow-161< 19x< -175\\ \Leftrightarrow x=-9\)
(x-7)(x+3)<0
TH1: \(\begin{cases}x-7>0\\ x+3<0\end{cases}\)
=>\(\begin{cases}x>7\\ x<-3\end{cases}\)
=>x∈∅
TH2: \(\begin{cases}x-7<0\\ x+3>0\end{cases}\)
=>\(\begin{cases}x<7\\ x>-3\end{cases}\)
=>-3<x<7
mà x nguyên
nên x∈{-2;-1;0;1;2;3;4;5;6}