cho a+b=1. tính A=a^2+2a^2b+2a b^2+b^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)
Vì \(a,b,c\ne0\Rightarrow abc\ne0\)
\(\Rightarrow bc+ac-ab=0\)
\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-2abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}}\)
\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)
\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)
CHÚC BẠN HỌC TỐT
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{bc+ac-ab}{abc}=0\)
Vì \(a,b,c\ne0\Rightarrow a.b.c\ne0\)
\(\Rightarrow bc+ac-ab=0\)
\(\Rightarrow\hept{\begin{cases}\left(bc+ac\right)^2=\left(ab\right)^2\\\left(bc-ab\right)^2=\left(-ac\right)^2\\\left(ac-ab\right)^2=\left(-bc\right)^2\end{cases}\Rightarrow}\hept{\begin{cases}b^2c^2+c^2a^2-a^2b^2=-abc^2\\b^2c^2+a^2b^2-a^2c^2=2ab^2c\\a^2c^2+a^2b^2-b^2c^2=2a^2bc\end{cases}}\)
\(\Rightarrow E=\frac{a^2b^2c^2}{2ab^2c}+\frac{a^2b^2c^2}{-2abc^2}+\frac{a^2b^2c^2}{2a^2bc}\)
\(\Rightarrow E=\frac{ac}{2}-\frac{ab}{2}+\frac{bc}{2}=\frac{ac-ab+bc}{2}=\frac{0}{2}=0\)
Vậy \(E=0\)

A = (2a + 2b +2c - 3c)^2 + (2b + 2c +2a - 3a)^2 + (2c + 2a +2b -3b)^2
Đặt a + b + c = x thì
A = (2x - 3c)^2 + (2x - 3a)^2 + (2x - 3b)^2
=4x^2 - 12cx + 9c^2 + 4x^2 - 12ax + 9x^2 + 4x^2 - 12bx + 9b^2
=12x^2 - 12x(a + b + c) + 9(a^2 + b^2 + c^2)
=12x^2 - 12x^2 + 9(a^2 + b^2 + c^2) =9(a^2 + b^2 + c^2) =9m

A = \(a^2\) + 2\(a^2b\) + 2\(ab^2\) + b\(^2\)
A = (\(a^2+2ab+b^2\)) - 2ab + (2\(a^2b+2ab^2\))
A = (a + b)\(^2\) + 2ab.(a+ b - 1) (1)
Thay a + b = 1 vào biểu thức (1) ta có:
A = 1\(^2\) + 2ab.(1 - 1)
A = 1 + 2.0
A = 1 + 0
A = 1