Bài 2 đừng tách nhân tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



a) \(1-2y+y^2=y^2-2y+1^2=\left(y-1\right)^2\)
b) \(\left(x+1\right)^2-25=\left(x+1\right)^2-5^2\)= \(\left(x+1+5\right).\left(x+1-5\right)=\left(x+6\right).\left(x-4\right)\)
c) \(1-4x^2=1^2-\left(2x\right)^2=\left(1+2x\right).\left(1-2x\right)\)
d) \(8-27x^3=2^3-\left(3x\right)^3=\left(2-3x\right).\left(4+6x+9x^2\right)\)

\(x^4-y^4+2x^3y-2xy^3\)
\(=\left(x^2+y^2\right)\left(x^2-y^2\right)+2xy\left(x^2-y^2\right)\)
\(=\left(x^2-y^2\right)\left(x^2+y^2+2xy\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x+y\right)^2\)
\(=\left(x-y\right)\left(x+y\right)^3\)
\(x^4-y^4+2x^3y-2xy^3\\ =\left(x^2\right)^2-\left(y^2\right)^2+2xy\left(x^2-y^2\right)\\ =\left(x^2-y^2\right)\left(x^2+y^2\right)+2xy\left(x^2-y^2\right)\\ =\left(x^2-y^2\right)\left(x^2+y^2+2xy\right)\\ =\left(x-y\right)\left(x+y\right)\left(x+y\right)^2\\ =\left(x-y\right)\left(x+y\right)^3\)


1a) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
b) \(=-\left(x^3-3x^2+3x-1\right)=-\left(x-1\right)^3\)
\(a,=-\left(x-1\right)^3\left[=\left(1-x\right)^3\right]\\ b,=\left(1-x\right)^3\)

Bài 2:
1) \(x^2-4x+4=\left(x-2\right)^2\)
2) \(x^2-9=x^2-3^2=\left(x-3\right)\left(x+3\right)\)
3) \(1-8x^3=\left(1-2x\right)\left(1+2x+4x^2\right)\)
4) \(\left(x-y\right)^2-9x^2=\left(x-y\right)^2-\left(3x\right)^2=\left(x-y-3x\right)\left(x-y+3x\right)=\left(-2x-y\right)\left(4x-y\right)\)
5) \(\dfrac{1}{25}x^2-64y^2=\left(\dfrac{1}{5}x-8y\right)\left(\dfrac{1}{5}x+8y\right)\)
6) \(8x^3-\dfrac{1}{8}=\left(2x-\dfrac{1}{2}\right)\left(4x^2+x+\dfrac{1}{4}\right)\)
Bài 1
a: \(2x\left(2x-3\right)-\left(2x-5\right)\left(2x+5\right)\)
\(=4x^2-6x-\left(4x^2-25\right)\)
\(=4x^2-6x-4x^2+25=-6x+25\)
b: \(\left(x^2+16\right)\left(x-4\right)\left(x+4\right)\)
\(=\left(x^2+16\right)\left(x^2-16\right)\)
\(=x^4-256\)
Bài 2:
a: \(12x^2-3\)
\(=3\left(4x^2-1\right)\)
\(=3\left(2x-1\right)\left(2x+1\right)\)
b: \(x^3-x^2=x^2\cdot x-x^2\cdot1=x^2\left(x-1\right)\)
c: \(4x^2y-y^3=y\left(4x^2-y^2\right)=y\left(2x-y\right)\left(2x+y\right)\)
d: \(x^2-y^2-4x+4\)
\(=\left(x^2-4x+4\right)-y^2\)
\(=\left(x-2\right)^2-y^2=\left(x-2-y\right)\left(x-2+y\right)\)
e: \(4x^2+9y^2-12xy-4\)
\(=\left(4x^2-12xy+9y^2\right)-4\)
\(=\left(2x-3y\right)^2-2^2=\left(2x-3y-2\right)\left(2x-3y+2\right)\)