K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(x^3+2x^2-18=0\)

=>x≃2,1

x^3+2x^2-18=0

x+4x-18=0

x+4x=18

5x=18

x=18/5

\(\left(x^2+2x+3\right)^2-9.\left(x^2+2x+3\right)+18=0\)

\(\Leftrightarrow\left(x^2+2x+3\right)^2-3\left(x^2+2x+3\right)-6\left(x^2+2x+3\right)+18=0\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x\right)-6\left(x^2+3x\right)=0\)

\(\Leftrightarrow x\left(x+2\right)\left(x^2+2x-3\right)=0\)

\(\Leftrightarrow x\left(x+2\right)\left(x+3\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+2=0\\x+3=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\\x=-3\\x=1\end{matrix}\right.\) ( thỏa mãn )

14 tháng 10 2018

a) \(x^2-4x=0\)

\(x\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)

b) \(4x^2-9=0\)

\(\left(2x\right)^2-3^2=0\)

\(\left(2x+3\right)\left(2x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+3=0\\2x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}}\)

c) \(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\left(x-3\right)\left(2x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\2x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)

d) \(x\left(2x+9\right)-4x-18=0\)

\(x\left(2x+9\right)-2\left(2x+9\right)=0\)

\(\left(2x+9\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+9=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-9}{2}\\x=2\end{cases}}}\)

e) \(\left(2x-1\right)^2-\left(x+2\right)^2=0\)

\(\left(2x-1-x-2\right)\left(2x-1+x+2\right)=0\)

\(\left(x-3\right)\left(3x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\3x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-1}{3}\end{cases}}}\)

14 tháng 10 2018

\(x^2-4x=0\)

\(x.\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-4=0\Leftrightarrow x=4\end{cases}}\)

\(4x^2-9=0\)

\(2^2x^2-9=0\)

\(\left(2x\right)^2-9=0\)

\(\left(2x\right)^2-3^2=0\)

\(\Rightarrow\orbr{\begin{cases}\left(2x\right)^2=\left(-3\right)^2\\\left(2x\right)^2=3^2\end{cases}\Rightarrow\orbr{\begin{cases}2x=-3\\2x=3\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{3}{2}\end{cases}}}}\)

\(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\left(x-3\right)\cdot\left(2x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-3\right)=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0+3\\2x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{2}\end{cases}}}\)

\(x\left(2x+9\right)-4x-18=0\)

\(x\left(2x+9\right)-\left(4x+18\right)=0\)

\(x\left(2x+9\right)-\left(2\cdot2x+2\cdot9\right)=0\)

\(x\left(2x+9\right)-2.\left(2x+9\right)=0\)

\(\left(2x+9\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}2x+9=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-9\\x=0+2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-9}{2}\\x=2\end{cases}}}\)

\(\left(2x-1\right)^2-\left(x+2\right)^2=0\)

\(\Rightarrow\left(2x-1\right)^2=\left(x+2\right)^2\)

\(\Rightarrow\orbr{\begin{cases}2x-1=x+2\\2x-1=-x+2\end{cases}\Rightarrow\orbr{\begin{cases}2x=3+x\\2x=-x+3\end{cases}\Rightarrow\orbr{\begin{cases}2x-x=3\\2x+x=3\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}}}\)

\(\)

17 tháng 2 2020

đề là j thế bn

17 tháng 2 2020

Đặt \(x^2+2x+3=a\)

\(a^2-9a+18=0\)

\(\Leftrightarrow\left(a-6\right)\left(a-3\right)=0\)

\(\Leftrightarrow a=6;a=3\)

21 tháng 6 2021

a) (2x + 1)(1 - 2x) + (1 - 2x)2 = 18

= ( 1 - 2x) \(\left[\left(2x+1+1-2x\right)\right]\) = 18

= 2(1 - 2x)  - 18 = 0

= 2 - 4x - 18 = 0

= -16 - 4x = 0

= -4x = 16

= x = \(\dfrac{16}{-4}=-4\)

b) 2(x + 1)2 -(x - 3)(x + 3) - (x - 4)2 = 0

= 2 (x2 + 2x + 1) - (x2 - 9) - (x2 - 8x + 16) = 0

= 2x2 + 4x + 2 - x2 + 9 - x2 + 8x - 16 = 0

= 12x - 5 = 0

= 12x = 5

= x = \(\dfrac{5}{12}\)

c) (x - 5)2 - x(x - 4) = 9

= x2 - 10x + 25 - x2 + 4x - 9 = 0

= -6x + 16 = 0

= -6x = -16

= x = \(\dfrac{-16}{-6}=\dfrac{8}{3}\)

d) (x - 5)2 + (x - 4)(1 - x)

= x2 - 10x + 25 + 5x - x2 - 4 = 0

= -5x + 21 = 0

= -5x = -21

= x = \(\dfrac{-21}{-5}=\dfrac{21}{5}\) 

 Chúc bạn học tốt

25 tháng 2 2022

(2x+1)(x+1)2(2x+3)-18=0

\(\Leftrightarrow\)(2x+1)(x+1)2(2x+3)=18

\(\Leftrightarrow\left(2x+2+1\right)\left(2x+2-1\right)\left(x+1\right)^2=18\)

\(\Leftrightarrow\left(\left(2x+2\right)^2-1\right)\left(x+1\right)^2=18\)

\(\Leftrightarrow4\left(x+1\right)^4-\left(x+1\right)^2-18=0\)

Đặt \(t=\left(x+1\right)^2\left(t\ge0\right)\)

\(\Leftrightarrow4t^2-t-18=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{9}{4}\left(tm\right)\\t=-2\left(ktm\right)\end{matrix}\right.\)

\(\Leftrightarrow\left(x+1\right)^2-\dfrac{9}{4}=0\)

\(\Leftrightarrow\left(x+1-\dfrac{2}{3}\right)\left(x+1+\dfrac{2}{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)

25 tháng 2 2022

\(\left(2x+1\right)\left(x+1\right)^2\left(2x+3\right)-18=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x+3\right)\left(x^2+2x+1\right)-18=0\)

\(\Leftrightarrow\left(4x^2+6x+2x+3\right)\left(x^2+2x+1\right)-18=0\)

\(\Leftrightarrow\left(4x^2+8x+3\right)\left(x^2+2x+1\right)-18=0\)

\(\Leftrightarrow\left(4x^2+8x+3\right).4.\left(x^2+2x+1\right)-4.18=0\)

\(\Leftrightarrow\left(4x^2+8x+3\right)\left(4x^2+8x+4\right)-72=0\)

-Đặt \(t=4x^2+8x+3\)

PT\(\Leftrightarrow t\left(t+1\right)-72=0\)

\(\Leftrightarrow t^2+t-72=0\)

\(\Leftrightarrow t^2-8t+9t-72=0\)

\(\Leftrightarrow t\left(t-8\right)+9\left(t-8\right)=0\)

\(\Leftrightarrow\left(t-8\right)\left(t+9\right)=0\)

\(\Leftrightarrow t-8=0\) hay \(t+9=0\)

\(\Leftrightarrow4x^2+8x+3-8=0\) hay \(4x^2+8x+3+9=0\)

\(\Leftrightarrow4x^2+8x-5=0\) hay \(4x^2+8x+12=0\)

\(\Leftrightarrow4x^2-2x+10x-5=0\) hay \(\left(2x\right)^2+2.2x.2+4+8=0\)

\(\Leftrightarrow2x\left(2x-1\right)+5\left(2x-1\right)=0\) hay \(\left(2x+2\right)^2+8=0\) (phương trình vô nghiệm vì \(\left(2x+2\right)^2+8\ge8\))

\(\Leftrightarrow\left(2x-1\right)\left(2x+5\right)=0\)

\(\Leftrightarrow2x-1=0\) hay \(2x+5=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\) hay \(x=\dfrac{-5}{2}\)

-Vậy \(S=\left\{\dfrac{1}{2};\dfrac{-5}{2}\right\}\)

 

 

27 tháng 4 2017

1) Ta có: \(\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy \(x=2\) hoặc \(x=-1\)

2) Ta có: \(\left(3-x\right)x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3-x=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=0\)

3) Ta có: \(2x-17=-\left(3x-18\right)\)

\(\Leftrightarrow2x-17=18-3x\)

\(\Leftrightarrow2x+3x=18+17\)

\(\Leftrightarrow5x=35\Leftrightarrow x=\dfrac{35}{5}=7\)

Vậy \(x=7\)

27 tháng 4 2017

(1)X1=2 và X2=-2

(2)X1=3 và X2=0

(3) X=7

Ta có: \(\left(x^2+2x+3\right)^2-9\left(x^2+2x+3\right)+18=0\)

\(\Leftrightarrow\left(x^2+2x+3\right)^2-3\left(x^2+2x+3\right)-6\left(x^2+2x+3\right)+18=0\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+3-3\right)-6\left(x^2+2x+3-3\right)=0\)

\(\Leftrightarrow\left(x^2+2x+3-6\right)\left(x^2+2x\right)=0\)

\(\Leftrightarrow\left(x^2+2x-3\right)\cdot x\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left(x^2+2x+1-4\right)\cdot x\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+1-2\right)\left(x+1+2\right)\cdot x\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)\cdot x\cdot\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\\x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\\x=0\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{1;-3;0;-2\right\}\)

2 tháng 10 2018

\(a.\) \(x^3-25x=0\)

\(\Leftrightarrow x\left(x^2-5^2\right)=0\)

\(\Leftrightarrow x\left(x-5\right)\left(x+5\right)=0\)

TH1: \(x=0\)

TH2: \(x+5=0\Rightarrow x=-5\)

TH3: \(x-5=0\Rightarrow x=5\)

2 tháng 10 2018

a, x3-25x = 0

\(\Leftrightarrow\) x( x2- 25) = 0

\(\Leftrightarrow\) x( x- 5)( x+ 5) = 0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x-5=0\\x+5=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)

Vậy phương trình có tập nghiệm là: S= { 0; 5; -5}

b, (2x+3)2 = (x+4)2

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x+3=x+4\\2x+3=-x-4\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}2x-x=4-3\\2x+x=-4-3\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=\dfrac{-7}{3}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm: S= {1; \(\dfrac{-7}{3}\)}

c, (2x-1)2 - (2x-5)(2x+5) = 18

\(\Leftrightarrow\) 4x2- 4x+ 1 - ( 4x2- 25) = 18

\(\Leftrightarrow\) 4x2- 4x+ 1- 4x2+ 25 = 18

\(\Leftrightarrow\) -4x + 26 = 18

\(\Leftrightarrow\) -4x = -8

\(\Leftrightarrow\) x = 2

Vậy phương trình có tập nghiệm S = { 2}

d, x3 - 8 = ( x-2)3

\(\Leftrightarrow\) x3 - 8 = x3 - 6x2 + 12x -8

\(\Leftrightarrow\) 6x2 - 12x = 0

\(\Leftrightarrow\) 6x( x- 2) = 0

\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

Vậy phương trình có tập nghiệm: S = {0; 2}