Cách chứng minh 4 góc cộng lại bằng 360 độ với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Gọi A^1, B^1, C^1 là 3 góc trong của tam giác ABC. A^2, B^2,C^2 là 3 góc ngoài của tam giác ABC.
Ta có: A^1 + A^2 = 180* B^1 + B^2 = 180* C^1 + C^2 = 180*
---------------------
Cộng vế theo vế được: A^1 +B^1 +C^1 +A^2 +B^2 +C^2 = 3.180* mà A^1 +B^1 +C^1 = 180* (tổng 3 góc trong của tam giác)
=> A^2 +B^2 +C^2 = 3.180* - 180* = 2.180* = 360*


Bạn tự vẽ hình nha =="
Kẻ Bz // Ax
mà Ax // Cy
=> Bz // Cy
Bz // Ax
=> A + B1 = 1800 (2 góc trong cùng phía)
Bz // Cy
=> C + B2 = 1800 (2 góc trong cùng phía)
Ta có:
A + B + C
= A + B1 + B2 + C
= 1800 + 1800
= 3600 (đpcm)
Chúc bạn học tốt ^^
Kẻ thêm tia Bz
Ta có : \(\widehat{xAB}=\widehat{B_3}\)(mà 2 góc này ở vị trí so le trong)
⇒Ax//Bz
Chứng minh tương tự: \(\widehat{BCy}=\widehat{C_4}\)(mà 2 góc này ở vị trí so le trong)
\(\Rightarrow\) Bz//Cy
⇒Ax//Cy

Gọi 3 góc ngoài ở 3 đỉnh của 1 tam giác lần lượt là A1;B1;C1 còn A2;B2;C2 là góc trong của tam giác.
Ta có:
A1 + A2 = 180o
B1 + B2 = 180o
C1 + C2 = 180o
=> A1+B1+C1+A2+B2+C2 = 360o
Mà A2 + B2 + C2 = 180o (tổng 3 góc trong của tam giác)
=> A1+B1+C1 = 360o-180o=180o.2 = 360o
Có thể chứng minh điều này bằng cách chia tứ giác thành hai tam giác bằng một đường chéo bn nhé
+) Lấy 1 tứ giác ABCD, ta kẻ 1 đường chéo AC hoặc BD để chia tứ giác thành 2 tam giác.
Ví dụ: kẻ AC, ta có 2 tam giác ABC và ACD.
+) Trong △ ABC:
∠A + ∠B + ∠BAC = 180 độ
+) Trong △ ACD:
∠DAC + ∠C + ∠D = 180 độ
∠BAC và \(\angle\)DAC là 2 góc kề nhau tại điểm A tạo thành góc tại đỉnh A của tứ giác → Cộng lại bằng góc A của tứ giác.
∠A+∠B+∠C+∠D=360 độ hay 180 độ +180 độ =360 độ