\(2^{x}+2^{x+1}+2^{x+2}+\cdots+2^{x+2025}=2^{2028}-4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


thêm \(\dfrac{1}{2021}+\dfrac{1}{2020}+\dfrac{1}{2019}+\dfrac{1}{2}\ne0\) nên nó z nha :Đ giải thích ấy
`<=>(x+1)/2021+1+(x+2)/2020+1+(x+3)/2019+1+(x+2028)/2-3=0`
`<=>(x+2022)/2021+(x+2022)/2020+(x+2022)/2019+(x+2022)/2=0`
`<=>(x+2022)(1/2021+1/2020+1/2019+1/2)=0`
`<=>x+2022=0`
`<=>x=-2022`


=>\(\left(\dfrac{x+1}{2021}+1\right)+\left(\dfrac{x+2}{2020}+1\right)+\left(\dfrac{x+3}{2019}+1\right)+\left(\dfrac{x+2028}{2}-3\right)=0\)
=>x+2022=0
=>x=-2022


(1+2+3+4+5+6+7+8+9+...............................+2016+2025) x (24,2 - 24,2) = (1 + 2 +3+4+5+6+7+8+9+...............................+2016+2025) x 0 = 0

\(\dfrac{x+2}{2008}+\dfrac{x+3}{2007}+\dfrac{x+4}{2006}+\dfrac{x+2028}{6}=0\)
\(\Leftrightarrow\left(\dfrac{x+2}{2008}+1\right)+\left(\dfrac{x+3}{2007}+1\right)+\left(\dfrac{x+4}{2006}+1\right)+\left(\dfrac{x+2028}{6}-3\right)=1+1+1-3\)
\(\Leftrightarrow\dfrac{x+2010}{2008}+\dfrac{x+2010}{2007}+\dfrac{x+2010}{2006}+\dfrac{x+2010}{6}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+1\right)=0\)
Mà \(\dfrac{1}{2008}+\dfrac{1}{2007}+\dfrac{1}{2006}+\dfrac{1}{6}\ne0\)
\(\Leftrightarrow x+2010=0\)
\(\Leftrightarrow x=-2010\)
Vậy ..

a) (x + 1) + (x + 2) + (x + 3) + (x + 4) + (x + 5) = 2025
(x + x + x + x + x) + (1 + 2 + 3 + 4 + 5) = 2025
5x + 15 = 2025
5x = 2025 - 15
5x = 2010
x = 2010 : 5
x = 402
b) 5 * x - x = 2020
5 * x - x * 1 = 2020
x * (5 - 1) = 2020
x * 4 = 2020
x = 2020 : 4
x = 505
mong bạn tick
a) ( x + 1 ) + ( x + 2) + ( x + 3 ) + ( x + 4 ) + ( x + 5 ) = 2025
\(\left(x+x+x+x+x\right)+\left(1+2+3+4+5\right)=2025\)
\(5x+15=2025\)
\(5x=2025-15\)
\(5x=2010\)
\(x=2010:5\)
\(x=402\).
x = 3
3