(a+a)x4:8=a
hỏi a là bao nhiêu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt t = x 2 ≥ 0
Phương trình (1) thành t 2 + 2 t + a = 0 2
Phương trình (1) có đúng 4 nghiệm
⇔ phương trình (2) có 2 nghiệm dương phân biệt
⇔ Δ > 0 S > 0 P > 0 ⇔ 4 − 4 a > 0 − 2 > 0 a > 0 ( v l ) ⇔ a ∉ ∅
Đáp án cần chọn là: A
Đặt t = x 2 ≥ 0
Phương trình (1) thành t 2 + 2 t + a = 0 1
Phương trình (1) có đúng 3 nghiệm phân biệt
=> phương trình (2) có một nghiệm bằng 0 và nghiệm còn lại dương.
(2) có nghiệm t = 0 ⇔ 0 2 + 2 . 0 + a = 0 ⇔ a = 0
Khi đó phương trình trở thành t 2 + 2 t = 0 ⇔ t = 0 t = − 2 < 0 nên không thỏa mãn yêu cầu bài toán.
Vậy không có giá trị nào của a thỏa mãn bài toán.
Đáp án cần chọn là: A
Đáp án A
Xét g x = x 4 − 4 x 3 + 4 x 2 + a
g ' x = 4 x 3 − 12 x 2 + 8 x = 0 ⇔ x = 0 , 1 , 2
+ Xét hàm số y= x4- 4x3+ 4x2+ a trên đoạn [ 0; 2].
Ta có đạo hàm y’ = 4x3-12x2+ 8x,
y
'
=
0
Khi đó; y( 0) = y( 2) = a; y( 1) = a+ 1
+ Nếu a≥ 0 thì M= a+ 1,m = a.
Để M ≤ 2m khi a≥ 1, suy ra a ∈ 1 ; 2 ; 3 thỏa mãn
+ Nếu a≤ - 1 thì M = a = - a , m = a + 1 = - a - 1 .
Để M≤ 2m thì a≤ -2, suy ra a a ∈ - 2 ; - 3
Vậy có 5 giá trị nguyên của a thỏa mãn yêu cầu.
Chọn B.
Chọn D
Xét hàm số f(x) = x 4 - 4 x 3 + 4 x 2 + a trên đoạn [0;2], ta có:
trên đoạn
Vì
nên trên đoạn [0;2] giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là a+1, a
Suy ra nếu
nếu
Khi đó
nên chọn
Khi đó nên chọn
Vậy có 4 giá trị a thỏa yêu cầu
Qua điểm A( 0;2 ) có thể kẻ được bao nhiêu tiếp tuyến với đồ thị của hàm số y= x4-2x2+2
Gọi d là tiếp tuyến của đồ thị hàm số đã cho.
Vì A ∈ d nên phương trình của d có dạng: y= kx+2
Vì d tiếp xúc với đồ thị (C) nên hệ
có nghiệm
Thay (2) vào (1) ta suy ra được
Chứng tỏ từ A có thể kẻ được 3 tiếp tuyến đến đồ thị (C)
Chọn B.
(a + a) x 4 : 8 = a
[ a x 1 + a x 1] x 4 : 8 = a
a x (1+ 1) x 4 : 8 = a
a x 2 x 4 : 8 = a
a x (2 x 4 : 8) = a
a x (8 : 8) = a
a x 1 = a
Vậy a là mọi số khác 0