K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3xy-x+2y=8

=>\(x\left(3y-1\right)+2y=8\)

=>\(3x\left(y-\frac13\right)+2y-\frac23=8-\frac23=\frac{22}{3}\)

=>\(\left(3x+2\right)\left(y-\frac13\right)=\frac{22}{3}\)

=>(3x+2)(3y-1)=22

=>(3x+2;3y-1)∈{(1;22);(22;1);(-1;-22);(-22;-1);(2;11);(11;2);(-2;-11);(-11;-2)}

=>(3x;3y)∈{(-1;23);(20;2);(-3;-21);(-24;0);(0;12);(9;3);(-4;-10);(-13;-1)}

=>(x;y)∈\(\left\lbrace\left(-\frac13;\frac{23}{3}\right);\left(\frac{20}{3};\frac23\right);\left(-1;-7\right);\left(-8;0\right);\left(0;4\right);\left(3;1\right);\left(-\frac43;-\frac{10}{3}\right);\left(-\frac{13}{3};-\frac13\right)\right\rbrace\)

2 tháng 7

Đề bài là gì vậy bạn

15 tháng 9 2021

đa thức lớp 5 hả bạm

15 tháng 9 2021

đa thức lớp 5 à

5 tháng 8 2017

Câu bc mình ghi nhầm nên dừng làm

5 tháng 8 2017

kết bạn với mình đi

10 tháng 7 2023

0,2:x=1,03+3,97

 

 

a: A=-2xy+xy+xy^2=-xy+xy^2

Bậc là 3

b: \(B=xy^2z+2xy^2z-3xy^2z+xy^2z-xyz=-xyz+xy^2z\)

Bậc là 4

c: \(C=4x^2y^3-x^2y^3+x^4+6x^4-2x^2=3x^2y^3+7x^4-2x^2\)

Bậc là 5

d: \(D=\dfrac{3}{4}xy^2-\dfrac{1}{2}xy^2+xy=\dfrac{1}{4}xy^2+xy\)

bậc là 3

e: \(E=2x^2-4x^2+3z^4-z^4-3y^3+2y^3\)

=-2x^2+2z^4-y^3

Bậc là 4

f: \(=3xy^2z+xy^2z+2xy^2z-4xyz=6xy^2z-4xyz\)

Bậc là 4

mik ko bít

I don't now

................................

.............

1 tháng 12 2021

\(a,\left(12x^2y^2-6xy^2\right):3xy+2y=6xy^2\left(2x-1\right):3xy+2y=2y\left(2x-1\right)+2y=4xy-2y+2y=4xy\)

\(b,\dfrac{4}{x+1} + \dfrac{8}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{4\left(x-1\right)+8}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4x-4+8}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4x+4}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{4}{x-1}\)

\(c,\dfrac{1 }{x+1}- \dfrac{1}{x-1} +\dfrac{ 2x}{x^2-1} \)

\(=\dfrac{x-1}{\left(x+1\right)\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{2x}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{x-1-x-1+2x}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{2x-2}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{2}{x+1}\)

 

1 tháng 12 2021

\(a,=4xy-2y+2y=4xy\\ b,\dfrac{4}{x+1}+\dfrac{8}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x-4+8}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4x+4}{\left(x+1\right)\left(x-1\right)}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\\ c,\dfrac{1}{x+1}-\dfrac{1}{x-1}+\dfrac{2x}{x^2-1}=\dfrac{x-1-x-1+2x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{2x-2}{\left(x-1\right)\left(x+1\right)}=\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x+1}\)

3 tháng 7 2017

\(x^2+2y^2+3xy+8=9x+10y\)

\(\Leftrightarrow4x^2+8y^2+12xy+32-36x-40y=0\)

\(\Leftrightarrow4x^2+12x\left(y-3\right)+\left(8y^2-40y+32\right)=0\)

\(\Leftrightarrow4x^2+12x\left(y-3\right)+9\left(y-3\right)^2-\left(y^2-14y+49\right)=0\)

\(\Leftrightarrow\left[2x-3\left(y-3\right)\right]^2-\left(y-7\right)^2=0\)

\(\Leftrightarrow\left[2x-3\left(y-3\right)-\left(y-7\right)\right].\left[2x-3\left(y-3\right)+\left(y-7\right)\right]=0\)

\(\Leftrightarrow\left(2x-4y+16\right)\left(2x-2y+2\right)=0\)

\(\Leftrightarrow\left(x-2y+8\right)\left(x-y+1\right)=0\)

-TH1:  \(x-2y+8=0\)  \(\Leftrightarrow x=2y-8\)  thay vào pt đề cho tìm được x, y.

Tương tự cho TH2

14 tháng 8 2021

\(P=-3xy\left(xy-2y^2\right)-x^2\left(x^2-y^2\right)+2y^2\left(x^2-3xy\right)\)

\(P=-3x^2y^2+6xy^3-x^4+x^2y^2+2x^2y^2-6xy^3\)

\(P=-x^4\)

Thay x = -2 vào P, ta có:

\(P=-\left(-2\right)^4=-16\)

Ta có: \(P=-3xy\left(xy-2y^2\right)-x^2\left(x^2-y^2\right)+2y^2\left(x^2-3xy\right)\)

\(=-3x^2y^2+6xy^3-x^4+x^2y^2+2x^2y^2-6xy^3\)

\(=-x^4\)

\(=-16\)