Tại sao lại có bão mặt trời
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Vì ko có mặt trời thì sẽ ko có ánh sáng và cả thế giới chìm vào bóng tối ch o đến khi mặt trăng xuất hiện
mk cũng ko rõ câu hỏi là j nhưng trong này kiểu j cũng có
Sự hình thành và tiến hóa của Hệ Mặt Trời bắt đầu từ cách đây khoảng 4,6 tỷ năm với sự suy sụp hấp dẫn của phần nhỏ thuộc một đám mây phân tử khổng lồ.[1] Hầu hết khối lượng suy sụp tích tụ ở trung tâm, tạo nên Mặt Trời, trong khi phần còn lại dẹt ra hình thành một đĩa đám mây bụi tiền hành tinh tiến hóa dần thành các hành tinh, mặt trăng, tiểu hành tinh và các tiểu thiên thể khác trong Hệ Mặt Trời.
Mô hình giả thuyết tinh vân được chấp thuận rộng rãi này do Emanuel Swedenborg, Immanuel Kant và Pierre-Simon Laplace đề ra từ thế kỉ 18. Lý thuyết về sự hình thành Hệ Mặt Trời đã phát triển liên tục nhờ kết quả của tiến bộ trong nhiều lĩnh vực khác nhau bao gồm thiên văn học, vật lý học, địa chất học và khoa học hành tinh. Từ buổi bình minh của kỷ nguyên không gian, mô hình này đã chịu nhiều thử thách và nó được hiệu chỉnh nhiều lần để thích ứng những phát hiện mới.
Hệ Mặt Trời đã tiến hóa đáng kể từ dạng ban đầu của nó. Nhiều mặt trăng được hình thành từ các đĩa khí và bụi quay xung quanh các hành tinh, trong khi một số khác sinh ra độc lập nhưng về sau bị bắt vào quỹ đạo của hành tinh. Một số khác nữa, như Mặt Trăng của Trái Đất, có thể là kết quả của những vụ va chạm khổng lồ. Va chạm thiên thể xảy ra thường xuyên cho tới tận ngày nay và đóng vai trò trung tâm trong sự tiến hóa của Hệ Mặt Trời. Vị trí các hành tinh thường xuyên thay đổi và hiện tượng dịch chuyển hành tinh này được cho là thiết yếu trong sự tiến hóa giai đoạn đầu của Hệ Mặt Trời.
Trong khoảng 5 tỷ năm tới, Mặt Trời sẽ nguội dần và nở ra nhiều lần kích thước hiện tại (trở thành một sao khổng lồ đỏ), trước khi lớp ngoài của nó tách ra trở thành một tinh vân hành tinh và để lại một tàn tích sao, tức sao lùn trắng. Trong tương lai xa, hấp dẫn từ các ngôi sao băng qua sẽ từ từ tước mất các hành tinh của Mặt Trời. Một số sẽ bị hủy diệt, số khác sẽ tách ra đi vào không gian liên sao. Cuối cùng, trong một quá trình có thể đến hàng chục tỷ năm hoặc hơn, Mặt Trời có thể trở thành hoàn toàn cô độc, không có một thiên thể nào quay quanh nó.[2]
Mục lục1Lịch sử2Sự hình thành2.1Tinh vân tiền Mặt Trời2.2Sự hình thành các hành tinh3Những phát triển về sau3.1Các hành tinh đá3.2Vành đai tiểu hành tinh3.3Dịch chuyển hành tinh3.4Các đợt bắn phá sau này3.5Mặt trăng4Tương lai4.1Ổn định dài hạn4.2Hệ thống vành đai mặt trăng4.3Mặt Trời và môi trường hành tinh5Tương tác thiên hà5.1Va chạm thiên hà và đổ vỡ hành tinh6Niên đại7Xem thêm8Chú thích9Tham khảo10Liên kết ngoàiLịch sử[sửa | sửa mã nguồn]
Những ý tưởng liên quan tới nguồn gốc và định mệnh của thế giới bắt nguồn từ những ghi chép cổ đại; nhưng ý tưởng về "Hệ Mặt Trời" như một hệ hành tinh, theo nhãn quan hiện đại, chỉ mới xuất hiện rất gần đây. Bước đầu tiên hướng tới một lý thuyết về sự hình thành và phát triển Hệ Mặt Trời là sự công nhận thuyết nhật tâm, xem Mặt Trời ở trung tâm và Trái Đất quay xung quay nó. Quan niệm này đã được thai nghén từ hàng nghìn năm trước (Aristarchus của Samos đã nói đến nó từ khoảng năm 250 trước Công nguyên) nhưng thuyết này chỉ được chấp nhận rộng rãi từ thế kỉ 17. Ghi chép đầu tiên nhắc tới thuật ngữ "Hệ Mặt Trời" xuất hiện vào năm 1704.[3]
Lý thuyết chuẩn hiện nay về sự hình thành Hệ Mặt Trời, giả thuyết tinh vân, đã trải qua nhiều thăng trầm kể từ khi xuất hiện trong thế kỉ 18 với Emanuel Swedenborg, Immanuel Kant, và Pierre-Simon Laplace, có lúc gần như bị bác bỏ. Sự chỉ trích đáng chú ý nhất đối với lý thuyết này là nó có vẻ giải thích không thỏa mãn việc Mặt Trời có tương đối ít mô men động lượng so với các hành tinh.[4] Tuy nhiên, từ đầu những năm 1980 nghiên cứu về các ngôi sao trẻ cho thấy chúng cũng có các đĩa khí và bụi nguội bao quanh, chính xác như giả thuyết tinh vân tiên đoán, khiến cho gần đây nó được đa số giới khoa học đón nhận trở lại.[5]
Hiểu biết về cách thức Mặt Trời tiếp tục phát triển ra sao đòi hỏi một hiểu biết về nguồn gốc năng lượng của nó. Việc Arthur Stanley Eddington xác nhận thuyết tương đối tổng quát của Albert Einstein đã khiến ông nhận ra rằng năng lượng Mặt Trời sinh ra từ phản ứng nhiệt hạch bên trong lõi.[6] Năm 1935, Eddington đi xa hơn tới chỗ đề xuất rằng các nguyên tố khác nặng hơn cũng có thể hình thành bên trong các ngôi sao.[7] Fred Hoyle phát triển tiên đề này với lập luận rằng các ngôi sao đã tiến hóa được gọi là sao khổng lồ đỏ tạo ra nhiều nguyên tố nặng hơn hiđrô và hêli trong lõi của chúng. Khi một sao khổng lồ đỏ tách bỏ các lớp ngoài, các nguyên tố này có thể quay lại hình thành nên các hệ thống sao mới.[7]
Sự hình thành[sửa | sửa mã nguồn]Tinh vân tiền Mặt Trời[sửa | sửa mã nguồn]Bài chi tiết: Giả thuyết tinh vânGiả thiết tinh vân khẳng định rằng Hệ Mặt Trời hình thành từ một vụ suy sụp hấp dẫn của một phần của một đám mây phân tử khổng lồ.[8] Đám mây này có kích thước khoảng 20 parsec (pc),[8] trong khi các mảnh của nó cỡ khoảng gần 1 pc (tức 3,25 năm ánh sáng).[9] Sự suy sụp các mảnh nhỏ dẫn tới hình thành những nhân đặc lớn cỡ 0,01–0,1 pc (2000–20000 AU).[8][10] Một trong số các mảnh này, được gọi là tinh vân tiền Mặt Trời, sau này sẽ trở thành Hệ Mặt Trời.[11] Cấu tạo của khu vực có khối lượng chỉ lớn hơn một chút Mặt Trời ngày nay này bao gồm hiđrô, cùng hêli và những lượng rất nhỏ liti sản sinh ra từ tổng hợp hạt nhân của Vụ Nổ Lớn, chiếm tới 96,69% khối lượng của nó. 3.31% còn lại bao gồm các nguyên tố nặng sinh ra từ tổng hợp hạt nhân ở các thế hệ sao trước nó.[12] Ở cuối vòng đời sao, các sao thường phun trào các nguyên tố nặng vào không gian liên sao.[13]

Những khoáng vật cổ nhất tìm thấy trong các mảnh thiên thạch, vốn được xem là những tàn tích của những vật liệu thể rắn đầu tiên hình thành trong tinh vân tiền Mặt Trời, có tuổi 4568,2 triệu năm, là chỉ dấu về tuổi của bản thân Hệ Mặt Trời.[1] Nghiên cứu về thiên thạch cổ phát hiện thấy những hạt nhân con của các đồng vị có chu kỳ bán rã ngắn, như Fe-60, vốn chỉ hình thành trong các sao tuổi đời ngắn phát nổ. Điều này cho thấy rằng một hoặc nhiều vụ nổ siêu tân tinh đã xảy ra gần Mặt Trời khi nó đang hình thành. Sóng xung kích từ siêu tân tinh đã kích hoạt sự hình thành Mặt Trời bằng việc tạo nên những vùng đậm đặc hơn bên trong đám mây, khiến cho các vùng này co sụp lại.[14] Bởi vì chỉ có những sao lớn, tuổi đời ngắn mới hình thành được siêu tân tinh, Mặt Trời ắt hẳn phải sinh ra trong một vùng tạo sao đã tạo nên những sao lớn, tương tự như Tinh vân Lạp Hộ.[15][16] Nghiên cứu về cấu trúc của Vành đai Kuiper và các vật liệu dị thường của nó gợi ý rằng Mặt Trời sinh ra trong một đám chứa khoảng từ 1 nghìn tới 10 nghìn sao đường kính từ 6,5 tới 19,5 năm ánh sáng với tổng khối lượng vào cỡ 3000 lần khối lượng Mặt Trời (M⊙). Đám này bắt đầu tách ra từ 135 triệu tới 535 triệu năm sau khi hình thành.[17][18] Một số mô hình mô phỏng Mặt Trời khi còn trẻ tương tác với các sao ở gần băng qua trong 100 triệu năm đầu đời sinh ra các quỹ đạo dị thường như ở phía rìa Hệ Mặt Trời, chẳng hạn các "vật thể tách rời" bên ngoài Sao Hải Vương.[19]
Do bảo toàn mô men động lượng, tinh vân quay ngày càng nhanh trong lúc co lại. Khi vật liệu bên trong tinh vân ngưng tụ, các nguyên tử trong nó va đập với tần số tăng dần, chuyển động năng của nó thành nhiệt. Tâm của nó, nơi chứa phần lớn khối lượng, trở nên ngày càng nóng hơn phần đĩa bao quanh.[9] Trong khoảng 100 nghìn năm,[8] sự cạnh tranh giữa lực hấp dẫn, áp suất khí, từ trường và sự quay khiến cho tinh vân dẹt ra thành một đĩa tiền hành tinh với đường kính 200 AU[9] và tạo nên một tiền sao (một ngôi sao chưa bắt đầu tổng hợp hiđrô) ở tâm.[20]
Vào chặng tiến hóa này, Mặt Trời được cho là ở giai đoạn sao T Tauri.[21] Nghiên cứu về dạng sao này chỉ ra rằng chúng thường đi kèm với những đĩa vật chất tiền hành tinh với khối lượng cỡ 0,001-0,1 M⊙.[22] Các đĩa này bao phủ những miền rộng hàng trăm AU—Kính viễn vọng Không gian Hubble đã từng quan sát các đĩa tiền hành tinh có đường kính lên tới 1000 AU trong các vùng tạo sao như Tinh vân Lạp Hộ[23]—và tương đối nguội, có nhiệt độ bề mặt cao nhất chỉ khoảng 1000 K.[24] Trong vòng 50 triệu năm, nhiệt độ và áp suất trong lõi Mặt Trời trở nên rất lớn, đủ để kích hoạt hidrô phản ứng nhiệt hạch, tạo ra nguồn nội năng cưỡng lại sự suy sụp hấp dẫn cho đến khi đạt tới trạng thái cân bằng thủy tĩnh.[25] Sự kiện này đánh dấu việc Mặt Trời bước vào giai đoạn quan trọng nhất trong vòng đời của nó, được gọi là "dãy chính", kéo dài tới tận ngày nay. Đặc trưng chủ yếu của các sao ở chuỗi chính là năng lượng sao lấy từ phản ứng nhiệt hạch tổng hợp hêli từ hiđrô.[26]
Sự hình thành các hành tinh[sửa | sửa mã nguồn]Các hành tinh khác nhau được tạo ra từ tinh vân Mặt Trời, đám mây bụi khí dạng đĩa còn lại sau khi Mặt Trời hình thành.[27] Phương thức hình thành hành tinh được giới khoa học chấp nhận hiện nay là sự bồi tụ (accretion), trong đó các hành tinh khởi đầu từ những hạt bụi quay xung quanh tiền sao. Do va đập vào nhau, các hạt này gắn kết thành những khối...

- Vì trời có màu xanh , nên sau khi chiếu xuống biển . Không phải biễn có màu xanh mà do màu của trời .
=> biển sẽ có màu xanh .
- Vì mây là chất nước tạo thành có màu trắng xoá . Vì lúc đó có bình minh , và mặt trời lặn sẽ tạo ra các màu như : vằng ; da cam ; đỏ ; ..
Vì nước biển hấp thụ ánh sáng màu xanh dương của các tia sáng từ mặt trời. Càng xuống sâu đáy biển, khoảng cách xa ánh mắt trời chiếu xuống nước, khả năng hấp thụ kém nên có màu xanh thẫm.
Bởi vì các tia sáng từ mặt trời đi qua tầng khí quyển, tầng khí quyển giữ lại màu xanh dương, nên bầu trời có sự tương phản với tầng khí quyển nên có màu xanh. Còn khi xế chiều, là lúc các tia sáng từ mặt trời chiếu vào vùng đó yếu nhất nên khi đo tầng khí quyển giữ lại các màu ánh sáng mạnh như vàng, da cam, đỏ nên bầu trời thường có những màu đó.
Trong các tia sang mặt trời có bảy màu chính, xếp theo thứ tự cường độ mạnh: đỏ, vàng, da cam, xanh lá, xanh lục, tím, xanh dương..

Em tham khảo bài này nhé:
Biển nước ta ở phía đông, ta chỉ thấy cảnh mặt trời mọ trên biển, nhưng Huy Cận lại viết “ Mặt trời xuống biển”. Cách viết đó tưởng vô lý, nhưng lại có lý ở chỗ điểm nhìn của tác giả đang ở trên thuyền ngoài khơi xa. Ông nhín về phía tây sẽ thấy cảnh mặt trời lặn xuống biển. Hình ảnh đó là thực nhưng cũng có thể là hình ảnh trong cảm quan nghệ thuật của nhà thơ.

Mặt Trời được sinh ra từ khoảng 4.6 tỷ năm trước. Nhiều nhà khoa học nghĩ rằng Mặt Trời và phần còn lại của Hệ Mặt Trời được hình thành từ đám mây bụi và khí gas khổng lồ được gọi là "Tinh vân Mặt Trời". Khi tinh vân bị phá hủy bởi chính trọng lực của nó, nó sẽ quay nhanh hơn và bị san phẳng thành dạng đĩa. Phần lớn vật chất sẽ bị kéo vào trung tâm để hình thành Mặt Trời.
Theo giả thuyết vụ va chạm lớn, một trong số các vật thể đó đã va vào Trái Đất không lâu sau khi hành tinh này hình thành.Được gọi với cái tên Theia, một vật thể có kích cỡ Sao Hoả đã va chạm với Trái Đất, thổi bay các khối vật chất của vỏ hành tinh trẻ này vào không gian. Lực hấp dẫn liên kết các mảnh vật chất này lại với nhau, tạo thành một trong những mặt trăng lớn nhất trong Hệ Mặt Trời quay xung quanh hành tinh chủ của nó. Kiểu hình thành này đã có thể giải thích tại sao mặt trăng được tạo thành chủ yếu từ các nguyên tố nhẹ, làm nó ít đặc hơn Trái Đất - vật chất hình thành nên mặt trăng đến chủ yếu từ vỏ Trái Đất khi chúng rời khỏi lõi đá của hành tinh sơ khai. Khi vật chất quy tụ xung quanh phần còn lại của lõi Theia, chúng có thể đã tập trung gần mặt phẳng hoàng đạo của Trái Đất, là đường đi của Mặt Trời trên bầu trời, và cũng là nơi Mặt Trăng di chuyển ngày nay.

Sương mù thường có vào mùa lạnh. Khi Mặt Trời mọc sương mù lại tan, vì nhiệt độ tăng làm cho tốc độ bay hơi tăng

Tham khảo
Nói giun đất là bạn của nhà nông là bởi vì giun đất đóng vai trò quan trọng đối với sản xuất nông nghiệp. ... Cơ thể giun đất tiết ra chất nhầy làm mềm đất. Phân của giun đất là phân sạch, cung cấp dinh dưỡng cho thực vật và có cấu trúc hạt tròn càng làm tăng thêm độ thoáng khí và tơi xốp cho đất.
Giun đất cũng giống như những sinh vật khác là hít thở bằng không khí. ... Khi trời mưa,đất thấm ướt nước mưa khiến cho lượng không khí giảm đáng kể khiến giun không thể thở được nên mới phải ngoi lên mặt đất để thở. Cũng giống như việc chúng ta đổ nước vào tổ dế để bắt dế đó.
Tham khảo:
Nói giun đất là bạn của nhà nông vì trong quá trình đào hang, giun đất làm cho đất tơi xốp, tăng độ phì nhiêu cho đất; tiết chất nhầy làm mềm đất; phân giun có cấu trúc hạt tròn làm đất tăng dộ tơi xốp và thoáng khí.
Giun đất cũng giống như những sinh vật khác là hít thở bằng không khí. ... Khi trời mưa,đất thấm ướt nước mưa khiến cho lượng không khí giảm đáng kể khiến giun không thể thở được nên mới phải ngoi lên mặt đất để thở. Cũng giống như việc chúng ta đổ nước vào tổ dế để bắt dế đó

Ánh sáng khả kiến (ánh sáng nhìn thấy được) là một phần của phổ điện từ mà mắt người có thể nhìn thấy được. Ánh sáng từ mặt trời hay bóng đèn điện được gọi là ánh sáng trắng.
Ánh sáng mặt trời có 7 gam màu: đỏ, da cam, vàng, lục, lam, chàm, tím. Mỗi màu sắc tương ứng với 1 bước sóng, tần số và mang năng lượng khác nhau. Ánh sáng tím có bước sóng ngắn nhất trong dải quang phổ khả kiến. Điều này đồng nghĩa với việc tần số và năng lượng của ánh sáng tím là cao nhất trong dải quang phổ khả kiến. Ngược lại, ánh sáng đỏ có bước sóng dài nhất, tần số thấp nhất và sẽ mang ít năng lượng nhất.
Ánh sáng trong không khí
Ánh sáng di chuyển trong không gian theo đường thẳng nếu không có gì làm nó bị nhiễu loạn. Khi ánh sáng di chuyển vào trong bầu khí quyển, nó tiếp tục đi theo đường thẳng cho đến khi gặp phải các hạt bụi nhỏ hoặc các phân tử khícản lại. Kể từ lúc này, những gì xảy ra với ánh sáng phụ thuộc vào bước sóng của nó và kích thước của những vật mà nó chiếu vào.
Những hạt bụi và nước trong không khí có kích thước lớn hơn so với bước sóng của ánh sáng khả kiến. Khi ánh sáng chiếu vào những hạt có kích thước lớn hơn, nó sẽ bị phản xạ lại theo nhiều hướng khác nhau hoặc bị các vật cản hấp thu. Do các màu sắc khác nhau trong ánh sáng đều bị phản xạ lại từ các hạt theo cùng một hướng nên ánh sáng phản xạ từ các hạt cản vẫn là ánh sáng trắng và chứa tất cả các màu ban đầu.
Ngoài bụi và nước, trong khí quyển cũng chứa các phân tử khí. Các phân tử khí này có kích thước nhỏ hơn so với bước sóng của ánh sáng khả kiến. Nếu ánh sáng trắng chiếu vào các phân tử khí, thì chuyện không đơn giản như khi chiếu vào bụi hay các hạt nước.
Khi ánh sáng chiếu vào phân tử khí, "một phần" của nó có thể bị phân tử khí hấp thụ. Sau đó, các phân tử khí sẽ bức xạ ánh sáng theo nhiều hướng khác với ban đầu. Sở dĩ có khái niệm "một phần" xuất hiện ở đây là vì sẽ có một số bước sóng trong ánh sáng trắng (tương ứng với các màu sắc) dễ bị hấp thụ, một số bước sóng khác khó bị hấp thụ hơn. Nói cách khác, một số bước sóng ngắn (như màu xanh dương) sẽ bị hấp thụ nhiều hơn so với các bước sóng dài (như màu đỏ).
Quá trình trên được gọi là tán xạ Rayleigh. Hiện tượng được đặt theo tên của người phát hiện ra nó: Lord John Rayleigh, một nhà vật lý học người Anh. Vào năm 1871, Rayleigh đã đưa ra phương trình tính hệ số tán xạ của một vật tỷ lệ nghịch với bước sóng ánh sáng (ký hiệu là lamda) mũ 4. Nói cách khác, ánh sáng có bước sóng càng ngắn thì càng bị tán xạ nhiều hơn và ngược lại.
Đã có thể trả lời câu hỏi ban đầu: Màu xanh của bầu trời là do tán xạ Rayleigh
Do bước sóng của ánh sáng (100~1000 nm) lớn hơn so với kích thước của các phân tử khí (10 nm) nên chúng ta có thể áp dụng công thức tán xạ Rayleigh cho hiện tượng tán xạ ánh sáng trong khí quyển của Trái Đất.
Một nguyên nhân chính là do hoạt động của mắt người trong việc nhìn thấy màu sắc. Mắt người nhạy cảm với ánh sáng có bước sóng từ 380 đến 740 nm. Trên võng mạc bình thường có 10 triệu tế bào que cảm biến ánh sáng và 5 triệu tế bào hình nón phát hiện ra màu sắc. Mỗi tế bào nón có chứa sắc tố giúp phản ứng với từng loại bước sóng khác nhau. Có 3 loại tế bào nón chính tương ứng với các loại bước sóng ngắn, trung bình và dài. Chúng ta cần phải sử dụng cả 3 loại tế bào này để nhìn thấy màu sắc chính xác nhất.
Mỗi tế bào nón có phản ứng với các bước sóng tối đa là: 570 nm đối với bước sóng dài, 543 đối với bước sóng trung bình, và 442 nm đối với bước sóng ngắn. Dù vậy, 3 loại tế bào nón này có thể phản ứng với số bước sóng trên diện rộng và chồng chéo nhau. Điều này có nghĩa là sẽ có trường hợp 2 quang phổ khác nhau có thể gây ra cùng 1 phản ứng trên các tế bào nón.
2 quang phổ khác nhau nhưng cùng tạo 1 phản ứng giống nhau trên tế bào nón được gọi là đồng phân dị vị. Trở lại vấn đề bầu trời, khi bầu trời là một hỗn hợp giữa màu xanh và tím. Các tế bào nón trong mắt người sẽ phản ứng khi nhìn thấy hỗn hợp này thành hỗn hợp của màu xanh và trắng. Và cuối cùng, tín hiệu đưa về hệ thần kinh chỉ là màu xanh. Điều này tương tự như thủ thuật trộn màu đỏ và xanh lá để thành màu vàng vậy.
Dù vậy, một số loài động vật nhìn bầu trời không phải có màu xanh như con người. Ngoài con người và một số loại linh trưởng, hầu hết các loài động vật khác đều có 2 loại tế bào hình nón trong võng mạc. Do đó, các loài động vật này, nhưchim chẳng hạn, sẽ nhìn thấy bầu trời là màu tím.
Tại sao chúng ta nhìn thấy mặt trời có màu vàng?
Trên Trái Đất, chúng ta nhìn thấy mặt trời vào ban ngày có màu vàng. Nếu bạn đi ra không gian hoặc lên trên Mặt Trăng, bạn sẽ nhìn thấy Mặt Trời có màu trắng. Tại sao vậy? Đó đơn giản là do: Trong vũ trụ không có bầu khí quyển để tán xạ ánh sáng mặt trời.
Trên Trái Đất, một vài bước sóng ngắn của ánh sáng mặt trời (xanh dương hoặc tím) đã bị các phân tử khí hấp thụ và loại bỏ ra khỏi chùm ánh sáng chiếu trực tiếp từ mặt trời tới mắt người. Do đó, các màu còn lại cùng nhau xuất hiện chính là màu vàng.
Cuối cùng: Tại sao hoàng hôn có màu đỏ?
Khi mặt trời bắt đầu lặn, ánh sáng cần phải đi một đoạn đường dài hơn qua không khí trước khi đến vị trí mà bạn nhìn thấy. Lúc này, sẽ có càng nhiều ánh sáng bị phản xạ và tán xạ hơn. Càng có ít ánh sáng trực tiếp từ mặt trời tiếp cận tới vị trí của bạn, thì bạn sẽ nhìn thấy mặt trời càng ít phát sáng hơn. Cũng trong thời điểm này, màu sắc của mặt trời bắt đầu có sự thay đổi, từ màu vàng lúc ban ngày bắt đầu chuyển dần sang cam và sau đó đến đỏ.
Nguyên nhân chính là: Mặc dù lượng ánh sáng xanh vẫn bị tán xạ như lúc ban ngày nhưng bị tán xạ nhiều lần do phải xuyên qua lớp không khí dày mới tới được mắt người. Bên cạnh đó, các bước sóng dài (cam, vàng) trong chùm sáng chiếu trực tiếp đến vị trí của bạn ngày một ít đi. Các bước sóng dài phải vượt qua quãng đường dài hơn so với ban ngày để trực tiếp đến với vị trị của bạn. Chỉ còn lại ánh sáng đỏ ít bị tán xạ được truyền thẳng đến mắt nhiều hơn.
Do đó, bạn sẽ nhìn thấy bầu trời ngày càng đỏ dần lên. Sau khi Mặt Trời đã khuất sau đường chân trời, chúng ta không thấy trực tiếp ánh sáng của Mặt Trời; nhưng nếu có các đám mây trên cao, chúng sẽ phản xạ lại ánh sáng đỏ xuống mặt đất, tạo nên cảnh tượng tuyệt đẹp của hoàng hôn.
Kết
Cuối cùng thì chúng ta đã tìm được câu trả lời cho các câu hỏi ban đầu. Một lần nữa, các hiện tượng tưởng chừng như hiển nhiên lại ẩn chứa bên trong nó nhiều vấn đề như vậy. Thật sự là bất cứ điều gì đều có nguyên nhân của nó. Dĩ nhiên, con người ta vẫn đang ngày đêm nghiên cứu để cố gắng lý giải thêm thật nhiều hiện tượng xung quanh mà trước đây chưa có lời giải đáp. Đó là mong ước của tất cả chúng ta và đặc biệt là các nhà khoa học. Mỗi người đều có nhiều câu hỏi tại sao cho riêng mình.

Tham khảo :
Sương mù thường có vào mùa lạnh. Khi Mặt Trời mọc sương mù lại tan, vì ánh nắng mặt trời làm nhiệt độ tăng vì thế làm cho tốc độ bay hơi tăng.
mùa lạnh,khi mặt trời lên,nhiệt độ tăng,sương sẽ nhanh chóng bốc hơi
Tk:
Bão mặt trời là hiện tượng tự nhiên xuất phát từ hoạt động của mặt trời. Nguyên nhân chính của bão mặt trời là do hoạt động của vết đen mặt trời. Vết đen là những vùng trên mặt trời có nhiệt độ thấp hơn so với xung quanh và có từ trường rất mạnh. Khi các vết đen này phát triển và tương tác với nhau, chúng có thể phóng thích năng lượng dưới dạng bức xạ và hạt tải điện, gây ra bão mặt trời.
Bão mặt trời xảy ra do sự giải phóng năng lượng khổng lồ từ Mặt Trời, thường liên quan đến các vết đen và các vụ phun trào năng lượng. Những vụ phun trào này tạo ra các hạt năng lượng cao và bức xạ điện từ, có thể gây ra các cơn bão từ khi tương tác với từ trường Trái Đất.