32 : [ 2x + 1 ] = 32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)
Dãy trên có số số hạng là:
( 20 - 1 ) : 1 + 1 = 20 ( số hạng )
Tổng của dãy trên là:
( 20 + 1 ) x 20 : 2 = 210
Đáp số: 210
b)
Dãy trên có số số hạng là:
( 21 - 1 ) : 2 + 1 = 11 ( số hạng )
Tổng của dãy trên là:
( 21 + 1 ) x 11 : 2 = 121
Đáp số: 121
c) ( 2x - 1 ) x 2 = 13
2x - 1 = \(\dfrac{13}{2}\)
2x = \(\dfrac{15}{2}\)
\(x=\dfrac{15}{4}\)
32 x ( x - 10 ) = 32
( x - 10 ) = 1
x = 11
\(A=1+2+3+...+20\)
Số hạng:
\(\left(20-1\right):1+1=20\) (số hạng)
Tổng: \(\left(20+1\right)\cdot20:2=210\)
\(B=1+3+5+...+21\)
Số hạng:
\(\left(21-1\right):2+1=11\) (số hạng)
Tổng: \(\left(21+1\right)\cdot11:2=121\)
\(\left(2x-1\right)\cdot2=13\)
\(\Rightarrow2x-1=\dfrac{13}{2}\)
\(\Rightarrow2x=\dfrac{15}{2}\)
\(\Rightarrow x=\dfrac{15}{4}\)
\(32\cdot\left(x-10\right)=32\)
\(\Rightarrow x-10=1\)
\(\Rightarrow x=11\)

<=> \(2x^2+x=x+32\)
<=> \(2x^2=32\)( cùng bớt cả hai về đi x )
<=> \(x^2=16\)
<=> \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
đúng thì nha

Lời giải:
$4x^2-2x-1=0$
$\Leftrightarrow [(2x)^2-2.2x.\frac{1}{2}+(\frac{1}{2})^2]-\frac{5}{4}=0$
$\Leftrightarrow (2x-\frac{1}{2})^2=\frac{5}{4}$
$\Rightarrow 2x-\frac{1}{2}=\pm \frac{\sqrt{5}}{2}$
$\Leftrightarrow 2x=\frac{1\pm \sqrt{5}}{2}$
$\Rightarrow x=\frac{1\pm \sqrt{5}}{4}$
$x^4-4x^2-32=0$
$\Leftrightarrow (x^2-2)^2-36=0$
$\Leftrightarrow (x^2-2-6)(x^2-2+6)=0$
$\Leftrightarrow (x^2-8)(x^2+4)=0$
Vì $x^2+4>0$ với mọi $x$ nên $x^2-8=0$
$\Leftrightarrow x=\pm 2\sqrt{2}$
a) Ta có: \(4x^2-2x-1=0\)
\(\Delta=\left(-2\right)^2-4\cdot4\cdot\left(-1\right)=4+16=20\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{2-2\sqrt{5}}{8}=\dfrac{1-\sqrt{5}}{4}\\x_2=\dfrac{2+2\sqrt{5}}{8}=\dfrac{1+\sqrt{5}}{4}\end{matrix}\right.\)
b) Ta có: \(x^4-4x^2-32=0\)
\(\Leftrightarrow x^4-8x^2+4x^2-32=0\)
\(\Leftrightarrow x^2=8\)
hay \(x\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)

Lời giải:
$4^{2x-1}=32$
$\Rightarrow 2^{2(2x-1)}=2^5$
$\Rightarrow 2(2x-1)=5$
$\Rightarrow 2x-1=2,5$
$\Rightarrow x=1,75$


\(a,\left(x-36\right):\left(2\cdot3^2\right)=2^3\cdot3\\ \Leftrightarrow x-36=432\\ x=468\\ b,2^x=32\\ \Leftrightarrow x=5\\ \Leftrightarrow x^3=27\\ \Leftrightarrow x^3=3^3\\ \Leftrightarrow x=3\\ d,1579+\left(625-x\right)=2023\\ \Leftrightarrow x=1579+625-2023\\ \Leftrightarrow x=181\)
A. \(\left(x-36\right):\left(2.3^2\right)=2^3.3\)
\(\left(x-36\right):\left(2.9\right)=8.3\)
\(\left(x-36\right):18=24\)
\(x-36=24.18\)
\(x-36=432\)
\(x=432+36\)
\(x=468\)
B. \(2^x=32\)
\(2^x=2^5\)
\(x=5\)
C. \(x^3=27\)
\(x^3=3^3\)
\(x=3\)
D. \(1579+\left(625-x\right)=2023\)
\(625-x=2023-1579\)
\(625-x=444\)
\(x=625-444\)
\(x=181\)

5(x - 1) = 2x - 32
5x - 5 = 2x - 32
5x - 2x = -32 + 5
3x = -27
x = (-27) : 3
x = -9
32:(2x+1)=32
=>\(2x+1=\frac{32}{32}=1\)
=>2x=1-1=0
=>x=0
32 : [ 2\(x\) + 1] = 32
2\(x+1\) = 32 : 32
2\(x\) + 1 = 1
2\(x\) = 1- 1
2\(x\) = 0
\(x\) = 0
Vậy \(x=0\)