Cho đường tròn (O), M nằm ngoài (O). Kẻ hai tiếp tuyến MA, MB tiếp xúc tại A, B. Qua M kẻ cát tuyến cắt (O) tại C và D. Chứng minh rằng AB, tiếp tuyến tại C, tiếp tuyến tại D đồng quy.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Những câu hỏi liên quan

28 tháng 5 2021
a.Có MA,MB là tiếp tuyến của (O) cắt nhau tại M (gt)
=> MA=MB
Có MA,MC là tiếp tuyến của (O') cắt nhau tại M (gt)
=> MA=MC
Bắc cầu ta được MA=MB=MC

5 tháng 3 2021
a) Xét tứ giác MAOB có
\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối
\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: M,A,O,B cùng thuộc một đường tròn(đpcm)
Kẻ OF⊥CD tại F. Gọi E là giao điểm của OF và AB. Gọi H là giao điểm của AB và OM
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1),(2) suy ra OM là đường trung trực của AB
=>OM⊥AB tại H và H là trung điểm của AB
Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2=R^2\left(3\right)\)
Xét ΔOFM vuông tại F và ΔOHE vuông tại H có
\(\hat{FOM}\) chung
Do đó: ΔOFM~ΔOHE
=>\(\frac{OF}{OH}=\frac{OM}{OE}\)
=>\(OF\cdot OE=OH\cdot OM\left(4\right)\)
Từ (3),(4) suy ra \(OF\cdot OE=R^2=OD^2\)
=>\(\frac{OF}{OD}=\frac{OD}{OE}\)
Xét ΔOFD và ΔODE có
\(\frac{OF}{OD}=\frac{OD}{OE}\)
\(\hat{FOD}\) chung
Do đó: ΔOFD~ΔODE
=>\(\hat{OFD}=\hat{ODE}\)
=>\(\hat{ODE}=90^0\)
=>ED là tiếp tuyến của (O)
ΔOCD cân tại O
mà OF là đường cao
nên OF là phân giác của góc COD
Xét ΔODE và ΔOCE có
OD=OC
\(\hat{DOE}=\hat{COE}\)
OE chung
Do đó: ΔODE=ΔOCE
=>\(\hat{ODE}=\hat{OCE}\)
=>\(\hat{OCE}=90^0\)
=>EC là tiếp tuyến tại C của (O)
Do đó: AB,hai tiếp tuyến tại D và C của (O) đồng quy tại E