K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6

CM: 2\(x^2\) + 2y\(^2\) ≥ 2\(xy\) - 2\(x\) - 2y - 2

⇔ 2\(x^2\) + 2y\(^2\) - (2\(xy\) - 2\(x\) - 2y - 2) ≥ 0

⇔ 2\(x^2\) + 2y\(^2\) - 2\(xy\) + 2\(x\) + 2y + 2 ≥ 0

⇔ (\(x^2\) - 2\(xy\) + y\(^2\)) + (\(x^2\) + 2\(x\) + 1) + (y\(^2\) + 2y + 1) ≥ 0

⇔ (\(x-y\))\(^2\) + (\(x+1\))\(^2\) + (y + 1)\(^2\) ≥ 0

Vì (\(x-y\))\(^2\) ≥ 0; (\(x+1\))\(^2\); (y + 1)\(^2\) ≥ 0

⇔ (\(x-y\))\(^2\) + (\(x+1\))\(^2\) + (y+ 1)\(^2\) ≥ 0 ∀ \(x;y\)

⇔ 2\(x^2\) + 2y\(^2\) ≥ 2\(xy\) - 2\(x\) - 2y - 2 (đpcm)


16 tháng 6

\(2x^2+2y^2\ge2xy-2x-2y-2\)

\(\Rightarrow2x^2+2y^2-2xy+2x+2y+2\ge0\)

\(\Rightarrow x^2+y^2-xy+x+y+1\) \(=\left(x-\dfrac{y}{2}\right)^2+\dfrac34y^2+x+y+1\)

Vì:

+) \(\left(x-\dfrac{y}{2}\right)^2\ge0\)

+) \(\dfrac34y^2\ge0\)

+) \(x+y+1\in\R\)

nên tổng \(3\) biểu thức luôn \(\ge0\) với mọi \(x,y\in\R\)

Vậy \(2x^2+2y^2\ge2xy-2x-2y-2\) \(\rarrđpcm\)

3 tháng 9 2017

lật sách ra nha bn

25 tháng 3 2016

đề đúng không vậy bạn?

14 tháng 3 2016

7 Hằng đảng thức :

(a+b)2 = a2 + 2ab+b2

(a-b)2 = a2 - 2ab+b2

a2 -b2=(a+b)(a-b)

(a+b)3 = a3 + 3a2b + 3ab+b3

(a-b)3 = a3 - 3a2b + 3ab2 -b3 

giải quyết giùm mk mk thì tích bn nhìu r đó

14 tháng 3 2016

??????????????????

7 tháng 11 2016

Tong sách trong vở lật ra là thấy 

Chúc bn học giỏi 

^_^ T_T

7 tháng 11 2016

1 binh phuong cua mot tong

2 binh phuong cua mot hieu

3 hieu 2 binh phuong

4 lap phuong cua mot tong

5 lap phuong cua mot hieu

6 tong 2 lap phuong

7 hieu hai lap phuong

1 tháng 2 2020
  1. Bình phương của 1 tổng: (a + b)2 = a2 + 2ab + b2 = (a - b)2 + 4ab
  2. Bình phương của 1 hiệu: (a - b)2 = a2 - 2ab + b2 = (a + b)2 - 4ab
  3. Hiệu 2 bình phương: a2 - b2 = (a - b)(a + b)
  4. Lập phương của 1 tổng: (a + b)3 = a3 + 3a2b + 3ab2 + b3
  5. Lập phương của 1 hiệu: (a - b)3 = a3 - 3a2b + 3ab2 - b3
  6. Tổng 2 lập phương: a3 + b3 = (a + b)(a2 - ab + b2) = (a + b)3 - 3a2b - 3ab2 = (a + b)3 - 3ab(a + b)
  7. Hiệu 2 lập phương: a3 - b3 = (a - b)(a2 + ab + b2) = (a - b)3 + 3a2b - 3ab2 = (a - b)3 + 3ab(a - b)

Nguồn: Wikidepia

Chúc bạn học tốt !!!

1 tháng 2 2020

Toán này là toán lớp 8 mà !!!!!!!!!!!!

=370^2-4=136896

22 tháng 3 2018

1)  \(\left(a+b\right)^2\left(b+c\right)^2\ge4abc\left(a+b+c\right)\)

2)  Cho   \(a+b=2.\)CMR:   

a)  \(a^2+b^2\ge2\)

b)  \(a^4+b^4\ge2\)

c)  \(a^8+b^8\ge2\)

3)  \(a+b+c+d=2.\) CMR   \(a^2+b^2+c^2+d^2\ge1\)

NV
22 tháng 4 2022

Có thể đưa về hàm số:

\(AB=2\Rightarrow MB=\sqrt{AB^2-MA^2}=\sqrt{4-MA^2}\)

Đặt \(MA=t\) với \(0\le t\le2\) \(\Rightarrow MB=\sqrt{4-t^2}\)

\(P=MA+2MB=f\left(t\right)=t+2\sqrt{4-t^2}\)

Xét hàm \(f\left(t\right)\) trên \(\left[0;2\right]\)

\(f'\left(t\right)=1-\dfrac{2t}{\sqrt{4-t^2}}=0\Rightarrow2t=\sqrt{4-t^2}\Rightarrow5t^2=4\Rightarrow t=\dfrac{2}{\sqrt{5}}\)

\(f\left(0\right)=4\) ; \(f\left(2\right)=2\) ; \(f\left(\dfrac{2}{\sqrt{5}}\right)=2\sqrt{5}\)

\(\Rightarrow f\left(t\right)_{max}=2\sqrt{5}\Rightarrow P_{max}=2\sqrt{5}\)