A)Y-2025=26×6
B) 3/5×Y=4/7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(y=\dfrac{5}{3}-\left(\dfrac{7}{12}:\dfrac{5}{6}\right)=\dfrac{5}{3}-\dfrac{7}{10}=\dfrac{50}{30}-\dfrac{21}{30}=\dfrac{29}{30}\)
b)\(y=\dfrac{4}{15}:\left[\left(\dfrac{4}{5}+\dfrac{1}{2}\right)\times\dfrac{4}{13}\right]=\dfrac{4}{15}:\left[\left(\dfrac{8}{10}+\dfrac{5}{10}\right)\times\dfrac{4}{13}\right]\)
\(y=\dfrac{4}{15}:\left[\dfrac{13}{10}\times\dfrac{4}{13}\right]=\dfrac{4}{15}:\dfrac{2}{5}=\dfrac{2}{3}\)
\(y.3\dfrac{7}{12}=6\dfrac{1}{4}\)
\(y.\dfrac{43}{12}=\dfrac{25}{4}\)
\(y=\dfrac{25}{4}:\dfrac{43}{12}\)
\(y=\dfrac{25.12}{4.43}\)
\(y=\dfrac{75}{43}\)
a) A=(x-4)2+ |y-1|-6
Ta thấy:
(x-4)² ≥ 0 ∀ x
|y-1| ≥ 0 ∀ y
⇒ (x-4)2+ |y-1| ≥ 0 ∀ x, y
⇒ (x-4)2+ |y-1|-6 ≥ -6 ∀ x, y
⇒ A ≥ -6 ∀ x, y
Dấu '=' xảy ra khi: \(\left[{}\begin{matrix}x-4=0\\y-1=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)
Vậy Min A = -6 tại x=4, y = 1
b) B= (x2-1)4+2.|2y-4|-3
Ta thấy:
(x2-1)4 ≥ 0 ∀ x
|2y-4| ≥ 0 ∀ y
⇒ 2|2y-4| ≥ 0 ∀ y
⇒ (x2-1)4+2.|2y-4| ≥ 0 ∀ x, y
⇒ (x2-1)4+2.|2y-4|-3 ≥ -3 ∀ x, y
⇒B ≥ -3 ∀ x, yDấu '=' xảy ra ra khi: \(\left[{}\begin{matrix}x^2-1=0\\2y-4=0\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x^2=1\\2y=4\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}x=\pm1\\y=2\end{matrix}\right.\)Vậy Min B = -3 tại x=\(\pm\)1, y = 2
\(a,\text{Vì }x,y\in N\Leftrightarrow x+2\ge2;y+3\ge3\\ \Leftrightarrow\left(x+2\right)\left(y+3\right)=6=2\cdot3=3\cdot2\\ \Leftrightarrow\left\{{}\begin{matrix}x+2=2\\y+3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(0;0\right)\)
\(b,\Leftrightarrow\left(x-3\right)\left(y+1\right)=7\cdot1=1\cdot7\\ \left\{{}\begin{matrix}x-3=7\\y+1=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=0\end{matrix}\right.\\ \left\{{}\begin{matrix}x-3=1\\y+1=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=6\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(10;0\right);\left(4;6\right)\right\}\)
\(x=3y\); \(y-x=26\)
từ \(y-x=26\Rightarrow x=y-26\)
thay \(x=y-26\), ta được:
\(y-26=3y\)
\(\Rightarrow2y=-26\)
\(\Rightarrow y=-13\)mà \(x=3y\Rightarrow x=3\cdot\left(-13\right)=-39\)
vậy \(x=-39;y=-13\)
Ta có : \(\frac{x}{5}=\frac{y}{7}\Rightarrow5y=7x\Rightarrow x=\frac{5y}{7}\)
Thay \(x=\frac{5y}{7}\)vào biểu thức \(2x+y=26\);ta được:
\(\frac{2.5y}{7}+y=26\Rightarrow10y+7y=26.7\Rightarrow17y=182\Rightarrow y=\frac{182}{17}\)
Do đó : \(x=\frac{\frac{5.182}{17}}{7}=\frac{130}{17}\)
Bài 5 :
a) \(\dfrac{y}{4}=\dfrac{9}{y}\)
\(\Rightarrow y^2=36\left(y\ne0\right)\)
\(\Rightarrow y=\pm6\)
b) \(\dfrac{y+7}{20}=\dfrac{5}{y+7}\left(y\ne-7\right)\)
\(\Rightarrow\left(y+7\right)^2=100=10^2\)
\(\Rightarrow\left[{}\begin{matrix}y+7=10\\y+7=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=3\\y=-17\end{matrix}\right.\)
c) \(\dfrac{4-5y}{3}=\dfrac{y+2}{5}\)
\(\Rightarrow5\left(4-5y\right)=3\left(y+2\right)\)
\(\Rightarrow20-25y=3y+6\)
\(\Rightarrow28y=14\)
\(\Rightarrow y=\dfrac{14}{28}=\dfrac{1}{2}\)
Bài 4 :
\(\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{c}{10}\)
\(\Rightarrow\dfrac{2a}{10}=\dfrac{3b}{21}=\dfrac{4c}{40}=\dfrac{2a+3b-4c}{10+21-40}=\dfrac{81}{-9}=-9\)
\(\Rightarrow\left\{{}\begin{matrix}a=-9.5=-45\\b=-9.7=-63\\c=-9.10=-90\end{matrix}\right.\)
a) y-2025=26 x 5
y-2025 = 130
y = 2155
b) 3/5 x y = 4/7
y= 4/7 : 3/5
y = 20/21
a)
y − 2025 = 26 × 6
y − 2025 = 156
y = 156 + 2025
y = 2181
Vậy y = 2181
b)
\(\dfrac35\times y=\dfrac47\)
\(y=\dfrac47:\dfrac35\)
\(y=\dfrac47\times\dfrac53\)
\(y=\dfrac{20}{21}\)
Vậy \(y=\dfrac{20}{21}\)