Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A = \(\dfrac{6}{3}\) - | 2\(x\) - 4|
| 2\(x\) - 4| ≥ 0 ∀ \(x\); ⇒ - |2\(x\) - 4| ≤ 0
⇒ \(\dfrac{6}{3}\) - |2\(x\) - 4| ≤ \(\dfrac{6}{3}\) ∀ \(x\)
Amax = \(\dfrac{6}{3}\) ⇔ \(2x\) - 4 = 0 ⇔ \(x\) = 2

b: \(x^2-3x+5=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}\forall x\)
\(\Leftrightarrow B< =3:\dfrac{11}{4}=\dfrac{12}{11}\forall x\)
Dấu '=' xảy ra khi x=3/2

- p lon nhat khi x = 7 , p nho nhat khi x = 6
- p lon nhat = 2554 , p nho nhat = 2014
dung khong ta ?

a) * Nếu M ≥ a ⇔ 1 M ≤ 1 a ;
* Nếu M ≤ a ⇔ 1 M ≥ 1 a ;
b) Ta có x 2 - 4x + 12 = ( x - 2 ) 2 + 8 ≥ 8 hay 1 x 2 + 2 x + 11 ≤ 1 10 ⇒ N ≥ − 1 2
Giá trị nhỏ nhất của N = − 1 2 khi x = -1.

các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi

A nhỏ nhất khi \(\frac{3}{x-1}\) nhỏ nhất
=> x - 1 lớn nhất
=> x là số dương vô cùng đề sai nhá

\(\left\{{}\begin{matrix}a^2\ge0\\a^4+a^2+1>0\end{matrix}\right.\) ;\(\forall a\Rightarrow P=\dfrac{a^2}{a^4+a^2+1}\ge0\)
\(P_{min}=0\) khi \(a=0\)
\(P=\dfrac{3a^2}{3\left(a^4+a^2+1\right)}=\dfrac{a^4+a^2+1-\left(a^4-2a^2+1\right)}{3\left(a^4+a^2+1\right)}=\dfrac{1}{3}-\dfrac{\left(a^2-1\right)^2}{3\left(a^4+a^2+1\right)}\le\dfrac{1}{3}\)
\(P_{max}=\dfrac{1}{3}\) khi \(a^2=1\Rightarrow a=\pm1\)
Ta có \(3P=\dfrac{3a^2}{a^4+a^2+1}=\dfrac{-a^4+2a^2-1+a^4+a^2+1}{a^4+a^2+1}=1-\dfrac{\left(a^2-1\right)^2}{a^4+a^2+1}\le1\)\(\Rightarrow P\le\dfrac{1}{3}\)
Dấu "=" xảy ra <=> a2 - 1 = 0 <=> a = \(\pm1\)
Vậy Max P = 1/3 khi a = \(\pm1\)
+) Dễ thấy \(P=\dfrac{a^2}{a^4+a^2+1}\ge0\) ("=" khi a = 0)
Vậy \(0\le P\le\dfrac{1}{3}\)
\(\frac{1}{A}=\frac{x+4}{4\sqrt{x}}\)
=>\(\frac{1}{A}-1=\frac{x+4-4\sqrt{x}}{4\sqrt{x}}=\frac{\left(\sqrt{x}-2\right)^2}{4\sqrt{x}}\ge0\forall x\) thỏa mãn ĐKXĐ
=>\(\frac{1}{A}\ge1\forall x\) thỏa mãn ĐKXĐ
=>A<=1 với mọi x thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi \(\sqrt{x}-2=0\)
=>\(\sqrt{x}=2\)
=>x=4(nhận)
Ta có: \(4\sqrt{x}\ge0\forall x\) thỏa mãn ĐKXĐ
=>\(A=\frac{4\sqrt{x}}{x+4}\ge0\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi x=0