Câu 2:
Giải phương trình:
\(2 x^{2} - 5 x + 3 = 0\)
Tìm nghiệm của phương trình.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: 2x-3=5
=>2x=8
=>x=4
b: (x+2)(3x-15)=0
=>(x-5)(x+2)=0
=>x=5 hoặc x=-2
2:
b: 3x-4<5x-6
=>-2x<-2
=>x>1
Ấn vào haohao108 - Trang của haohao108 - Học toán với OnlineMath ấn Thống kê hỏi đáp là có Trường Đại học Sư phạm Hà Nội
ý 1: Để pt (1) có 1 nghiệm duy nhất thì \(\Delta=0\)
\(\Delta=\left(-5\right)^2-4m+8=-4m+33\)
\(\Rightarrow33-4m=0\Rightarrow m=\dfrac{33}{4}\)
ý 2: Khi \(m=4\Rightarrow x^2-5x+2=0\)
\(\Delta=\left(-5\right)^2-8=17\Rightarrow\left[{}\begin{matrix}x=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{5-\sqrt{17}}{2}\\x=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+\sqrt{17}}{2}\end{matrix}\right.\)
Vậy...
1.
Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)
Pt trở thành:
\(4t=t^2-5+2m-1\)
\(\Leftrightarrow t^2-4t+2m-6=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)
2.
Để pt đã cho có 2 nghiệm:
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)
Khi đó:
\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)
\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)
\(2x^2-5x+3=0\)
=>\(2x^2-2x-3x+3=0\)
=>2x(x-1)-3(x-1)=0
=>(x-1)(2x-3)=0
=>\(\left[\begin{array}{l}x-1=0\\ 2x-3=0\end{array}\right.\Rightarrow\left[\begin{array}{l}x=1\\ x=\frac32\end{array}\right.\)
\(2x^2-5x+3=0\)
\(\Rightarrow2x^2-\left(2+3\right)x+3=0\)
\(2x^2-2x-3x-3=0\)
\(2x\left(x-1\right)-3\left(x-1\right)=0\)
\(\left(2x\cdot-3\right)\left(x-1\right)\)
TH1:
-6x=0
=>x=0
TH2:
X-1=0
=>x=1