K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5

Bạn hỏi về tổng dãy số sau:

\(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \hdots + \frac{1}{128}\)

Đây là một cấp số nhân với:

  • Số hạng đầu tiên: \(a_{1} = 1\)
  • Công bội: \(q = \frac{1}{2}\)
  • Số hạng cuối cùng: \(\frac{1}{128}\)

Ta có:

\(\frac{1}{128} = \frac{1}{2^{7}}\)

Vậy số hạng cuối là số hạng thứ 8.

Tổng cấp số nhân có công thức:

\(S_{n} = a_{1} \cdot \frac{1 - q^{n}}{1 - q}\)

Trong đó:

  • \(a_{1} = 1\)
  • \(q = \frac{1}{2}\)
  • \(n = 8\)

Tính \(q^{n}\):

\(q^{n} = \left(\left(\right. \frac{1}{2} \left.\right)\right)^{8} = \frac{1}{256}\)

Thay vào công thức:

\(S_{8} = 1 \cdot \frac{1 - \frac{1}{256}}{1 - \frac{1}{2}} = \frac{1 - \frac{1}{256}}{\frac{1}{2}}\) \(= \frac{\frac{255}{256}}{\frac{1}{2}} = \frac{255}{256} \times 2 = \frac{255}{128}\)

Đáp số:

\(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \hdots + \frac{1}{128} = \boxed{\frac{255}{128}}\)

Nếu bạn cần giải thích thêm hoặc muốn biết cách tính nhanh, hãy hỏi nhé!

21 tháng 5

A = 1 + \(\frac12+\frac14+\frac18+\cdots+\) \(\frac{1}{128}\)

2 x A = 2 + 1 + \(\frac12\) + \(\frac14\) + ...+ \(\frac{1}{64}\)

2 x A - A = 2 + 1 + \(\frac12+\frac14\) + ... + \(\frac{1}{64}\) - 1 - \(\frac12\) - ...- \(\frac{1}{128}\)

A x (2 - 1) = (2 - \(\frac{1}{128}\)) + (1 - 1) + (\(\frac12-\frac12\)) + (\(\frac14-\frac14\))+..+(\(\frac{1}{64}-\frac{1}{64}\))

A = 2 - \(\frac{1}{128}\)

A = \(\frac{256-1}{128}\)

A = \(\frac{255}{128}\)

20 tháng 3 2016

= 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128

ta rút gọn thành :  1 - 1/128

= 127/128

20 tháng 3 2016

Đặt biểu thức đó là A

=> 2A = 1 + 1/2 + 1/4 + ... + 1/32 + 1/64

=> 2A - A = A = 1 - 1/128 = 127/128

tk nha s5.jpgdinh tran uyen

7 tháng 10 2016

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{128}\)

Đặt : \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+...+\frac{1}{128}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{64}\)

\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{64}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{128}\right)\)

\(\Rightarrow A=1-\frac{1}{128}\)

\(\Rightarrow A=\frac{127}{128}\)

Vậy : \(A=\frac{127}{128}\)

7 tháng 10 2016

1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128.
Gọi biểu thức là A ta có A.2
A.2=1+1/2+1/4+1/8+1/16+1/32+1/64
A.2-A=(1+1/2+1/4+1/8+1/16+1/32+1/64)-(1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128)
A=1-1/128
A=127/128

26 tháng 3 2019

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(=1-\frac{1}{2}+...+\frac{1}{128}=1-\frac{1}{128}=\frac{127}{128}\)

25 tháng 1 2016

A= 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512 
A = 1 - 1/2 + 1/2- 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256 - 1/256 - 1/512 
A = 1 - 1/512 
A = 511/512 

dựa vào nhé

 

25 tháng 1 2016

A = 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + ..... + 1/64 - 1/128 + 1/128 -1/256

   = 1 - 1/256 = 255/256

20 tháng 10 2018

1/2 + 1/4 + 1/8 +....+ 1/64 + 1/128

= 1/1-1/2 + 1/2-1/4 +....+ 1/32-1/64 + 1/64-1/128

=1/1-1/128

=127/128

giùm mik nha 

2 tháng 1 2024

*Tham khảo 

b: A=1/3+1/9+...+1/3^10

=>3A=1+1/3+...+1/3^9

=>A*2=1-1/3^10=(3^10-1)/3^10

=>A=(3^10-1)/(2*3^10)

c: C=3/2+3/8+3/32+3/128+3/512

=>4C=6+3/2+...+3/128

=>3C=6-3/512

=>C=1023/512

d: A=1/2+...+1/256

=>2A=1+1/2+...+1/128

=>A=1-1/256=255/256

25 tháng 10 2020

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

đặt A = \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\) 

\(A\cdot2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\)

\(A\cdot2-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)\) \(-\) \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)\)

\(A=\) \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-\frac{1}{16}-\frac{1}{32}-\frac{1}{64}-\frac{1}{128}\)

\(A=1-\frac{1}{128}\)

\(A=\frac{127}{128}\)

25 tháng 10 2020

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

Ta lấy\(\frac{1}{128}\)là MSC. Ta tính được \(\frac{64}{128}+\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}\)

Kết quả bằng \(\frac{127}{128}\)

14 tháng 1 2018

127/128

14 tháng 1 2018

1/2 + 1/4 + 1/8 + 1/16 +1/32 + 1/64 + 1/128

=1-1/2+1/2-1/4+1/4-1/8+...+1/64+1/128

=1-1/128

=127/128

18 tháng 3 2017

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{64}-\frac{1}{128}\)

\(=1-\frac{1}{128}\)

\(=\frac{127}{128}\)

18 tháng 3 2017

A=\(\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}\right)=\frac{1}{2}\left(1+A-\frac{1}{2}-\frac{1}{128}\right)\)

2A=\(A+\frac{1}{2}-\frac{1}{128}=A+\frac{63}{128}\)

=> A=\(\frac{63}{128}\)