CM:1+2=12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Bài 1:
ΔDMK vuông tại M
=>\(DM^2+MK^2=DK^2\)
=>\(DM^2=12^2-10^2=44\)
=>\(DM=2\sqrt{11}\left(cm\right)\)
ΔDMN vuông tại D
=>\(DM^2+DN^2=MN^2\)
=>\(DN^2+44=324\)
=>\(DN^2=280\)
=>\(DN=2\sqrt{70}\left(cm\right)\)
Bài 2:
ΔGNH vuông tại G
=>\(GN^2+GH^2=HN^2\)
=>\(HN^2=8^2+12^2=208\)
=>\(HN=4\sqrt{13}\left(cm\right)\)
Xét ΔGNH vuông tại G có \(cosGNH=\dfrac{GN}{HN}=\dfrac{2}{\sqrt{13}}\)
=>\(cosNHM=\dfrac{2}{\sqrt{13}}\left(\widehat{GNH}=\widehat{NHM}\right)\) do GN//HM
Xét ΔNHM có \(cosNHM=\dfrac{HN^2+HM^2-NM^2}{2\cdot HN\cdot HM}\)
=>\(\dfrac{52+HM^2-484}{2\cdot4\sqrt{13}\cdot HM}=\dfrac{2}{\sqrt{13}}\)
=>\(HM^2-432=\dfrac{2}{\sqrt{13}}\cdot2\cdot4\sqrt{13}\cdot HM\)
=>\(HM^2-432=16HM\)
=>\(HM^2-16HM-432=0\)
=>\(\left[{}\begin{matrix}HM=8+4\sqrt{31}\left(cm\right)\left(nhận\right)\\HM=8-4\sqrt{31}\left(loại\right)\end{matrix}\right.\)

Theo định lý Fermat nhỏ, \(2^{16}-1⋮17\) (đl Fermat nhỏ phát biểu rằng, cho số nguyên dương \(a\) và số nguyên tố \(p\) mà \(\left(a,p\right)=1\) thì \(a^{p-1}-1⋮p\), chứng minh thì bạn tìm hiểu thêm nhé, mình không chứng minh ở đây vì nó khá dài)
Mà ta lại có \(2^4+1=17⋮17\) \(\Rightarrow2^{12}\left(2^4+1\right)⋮17\) \(\Rightarrow2^{16}+2^{12}⋮17\)
Kết hợp với \(2^{16}-1⋮17\), ta có \(\left(2^{16}+2^{12}\right)-\left(2^{16}-1\right)⋮17\)
\(\Rightarrow2^{12}+1⋮17\)
a, Ta có: 212+1=4096+1=4097 chia hết cho 17Vậy 212+1 chia hết cho 17

gọi h là chiều cao hình thang
SABCD= (AB+CD).h/2 =12-> (AB+CD)h=24
theo giả thiết ta có: AN=AB+2; CM=CD+3
SANCM=(AN+CM).h/2=22 <-> (AB+2+CD+3).h/2=22
<-> (AB+CD+5).h=44 <-> (AB+CD).h+5h=44
<-> 24+5h=44 -> h=4
ok xong r nè. đầu bài này k chặt chẽ cho lắm


đáy bé HT là
6:(3-2)x2=12 (cm)
đáy lớn HT là
12+6=18(cm)
chiều cao HT là
120x2:(12+18)=8(cm)
chu vi TH là
12+18+8+10=48(cm)
ĐS:48 cm
:D

Bài 1:
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=5^2+12^2=169\)
hay BC=13cm
Ta có: ΔABC vuông tại A
nên bán kính đường tròn ngoại tiếp ΔABC là một nửa của cạnh huyền BC
hay \(R=\dfrac{BC}{2}=\dfrac{13}{2}=6.5\left(cm\right)\)
Bài 2:
Ta có: ABCD là hình thang cân
nên A,B,C,D cùng thuộc 1 đường tròn\(\left(đl\right)\)
hay bán kính đường tròn ngoại tiếp ΔABC cũng là bán kính đường tròn ngoại tiếp tứ giác ABCD
Xét ΔABC có
\(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
Suy ra: Bán kính của đường tròn ngoại tiếp tứ giác ABCD là \(R=\dfrac{BC}{2}=10\left(cm\right)\)

1/2 của 12 cm là 12 : 2 = 6 (cm)
1/2 của 18 kg là 18 : 2 = 9 (kg)
1/2 của 10 lít là 10 : 2 = 5 (lít)
Vì 1 và 2 ghép lại thành 12
1 bố = 1 mẹ = 12 đứa con