K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để tìm giá trị nhỏ nhất (GTNN) của biểu thức \(C = 2 \left(\right. x + 1 \left.\right) \left(\right. x^{2} + x - 4 \left.\right)\), ta thực hiện các bước sau:
  1. Khai triển biểu thức: \(C = 2 \left(\right. x^{3} + x^{2} - 4 x + x^{2} + x - 4 \left.\right)\) \(C = 2 \left(\right. x^{3} + 2 x^{2} - 3 x - 4 \left.\right)\) \(C = 2 x^{3} + 4 x^{2} - 6 x - 8\)
  2. Tìm đạo hàm của \(C\) theo \(x\): \(C^{'} \left(\right. x \left.\right) = \frac{d C}{d x} = 6 x^{2} + 8 x - 6\)
  3. Giải phương trình \(C^{'} \left(\right. x \left.\right) = 0\) để tìm các điểm cực trị: \(6 x^{2} + 8 x - 6 = 0\) Chia cả hai vế cho 2: \(3 x^{2} + 4 x - 3 = 0\) Sử dụng công thức nghiệm của phương trình bậc hai: \(x = \frac{- b \pm \sqrt{b^{2} - 4 a c}}{2 a}\) Ở đây, \(a = 3\)\(b = 4\)\(c = - 3\)\(x = \frac{- 4 \pm \sqrt{4^{2} - 4 \left(\right. 3 \left.\right) \left(\right. - 3 \left.\right)}}{2 \left(\right. 3 \left.\right)}\) \(x = \frac{- 4 \pm \sqrt{16 + 36}}{6}\) \(x = \frac{- 4 \pm \sqrt{52}}{6}\) \(x = \frac{- 4 \pm 2 \sqrt{13}}{6}\) \(x = \frac{- 2 \pm \sqrt{13}}{3}\) Vậy ta có hai nghiệm: \(x_{1} = \frac{- 2 + \sqrt{13}}{3} \approx 0.535\) \(x_{2} = \frac{- 2 - \sqrt{13}}{3} \approx - 1.869\)
  4. Tìm đạo hàm bậc hai của \(C\) để xác định tính chất cực trị: \(C^{' '} \left(\right. x \left.\right) = \frac{d^{2} C}{d x^{2}} = 12 x + 8\)
  5. Tính \(C^{' '} \left(\right. x \left.\right)\) tại các điểm cực trị:
    • Tại \(x_{1} = \frac{- 2 + \sqrt{13}}{3}\)\(C^{' '} \left(\right. x_{1} \left.\right) = 12 \left(\right. \frac{- 2 + \sqrt{13}}{3} \left.\right) + 8 = 4 \left(\right. - 2 + \sqrt{13} \left.\right) + 8 = - 8 + 4 \sqrt{13} + 8 = 4 \sqrt{13} > 0\) Vậy \(x_{1}\) là điểm cực tiểu.
    • Tại \(x_{2} = \frac{- 2 - \sqrt{13}}{3}\)\(C^{' '} \left(\right. x_{2} \left.\right) = 12 \left(\right. \frac{- 2 - \sqrt{13}}{3} \left.\right) + 8 = 4 \left(\right. - 2 - \sqrt{13} \left.\right) + 8 = - 8 - 4 \sqrt{13} + 8 = - 4 \sqrt{13} < 0\) Vậy \(x_{2}\) là điểm cực đại.
  6. Tính giá trị của \(C\) tại \(x_{1} = \frac{- 2 + \sqrt{13}}{3}\): \(C \left(\right. x_{1} \left.\right) = 2 \left(\right. \frac{- 2 + \sqrt{13}}{3} + 1 \left.\right) \left(\right. \left(\left(\right. \frac{- 2 + \sqrt{13}}{3} \left.\right)\right)^{2} + \frac{- 2 + \sqrt{13}}{3} - 4 \left.\right)\) \(C \left(\right. x_{1} \left.\right) = 2 \left(\right. \frac{1 + \sqrt{13}}{3} \left.\right) \left(\right. \left(\right. \frac{4 - 4 \sqrt{13} + 13}{9} \left.\right) + \frac{- 2 + \sqrt{13}}{3} - 4 \left.\right)\) \(C \left(\right. x_{1} \left.\right) = 2 \left(\right. \frac{1 + \sqrt{13}}{3} \left.\right) \left(\right. \frac{17 - 4 \sqrt{13}}{9} + \frac{- 6 + 3 \sqrt{13}}{9} - \frac{36}{9} \left.\right)\) \(C \left(\right. x_{1} \left.\right) = 2 \left(\right. \frac{1 + \sqrt{13}}{3} \left.\right) \left(\right. \frac{17 - 4 \sqrt{13} - 6 + 3 \sqrt{13} - 36}{9} \left.\right)\) \(C \left(\right. x_{1} \left.\right) = 2 \left(\right. \frac{1 + \sqrt{13}}{3} \left.\right) \left(\right. \frac{- 25 - \sqrt{13}}{9} \left.\right)\) \(C \left(\right. x_{1} \left.\right) = \frac{2}{27} \left(\right. 1 + \sqrt{13} \left.\right) \left(\right. - 25 - \sqrt{13} \left.\right)\) \(C \left(\right. x_{1} \left.\right) = \frac{2}{27} \left(\right. - 25 - \sqrt{13} - 25 \sqrt{13} - 13 \left.\right)\) \(C \left(\right. x_{1} \left.\right) = \frac{2}{27} \left(\right. - 38 - 26 \sqrt{13} \left.\right)\) \(C \left(\right. x_{1} \left.\right) = \frac{- 76 - 52 \sqrt{13}}{27} \approx - 11.489\)
Vậy, giá trị nhỏ nhất của biểu thức \(C\) là \(\frac{- 76 - 52 \sqrt{13}}{27} \approx - 11.489\).
17 tháng 5

Ta cần tìm giá trị nhỏ nhất (GTNN) của biểu thức:

\(C = 2 \left(\right. x + 1 \left.\right) \left(\right. x^{2} + x - 4 \left.\right)\)

Bước 1: Phân tích biểu thức

Biểu thức là một đa thức bậc ba, có thể khai triển:

\(C = 2 \left(\right. x + 1 \left.\right) \left(\right. x^{2} + x - 4 \left.\right)\)

Ta phân phối:

\(= 2 \left[\right. \left(\right. x \left.\right) \left(\right. x^{2} + x - 4 \left.\right) + \left(\right. 1 \left.\right) \left(\right. x^{2} + x - 4 \left.\right) \left]\right. = 2 \left[\right. x^{3} + x^{2} - 4 x + x^{2} + x - 4 \left]\right. = 2 \left[\right. x^{3} + 2 x^{2} - 3 x - 4 \left]\right.\)

Vậy:

\(C = 2 x^{3} + 4 x^{2} - 6 x - 8\)

Bước 2: Tìm GTNN của C

Ta có thể dùng đạo hàm để tìm cực trị:

\(C^{'} = \frac{d}{d x} \left(\right. 2 x^{3} + 4 x^{2} - 6 x - 8 \left.\right) = 6 x^{2} + 8 x - 6\)

Giải \(C^{'} = 0\):

\(6 x^{2} + 8 x - 6 = 0 \Rightarrow 3 x^{2} + 4 x - 3 = 0\) \(\Delta = 4^{2} - 4 \cdot 3 \cdot \left(\right. - 3 \left.\right) = 16 + 36 = 52 \Rightarrow x = \frac{- 4 \pm \sqrt{52}}{6} = \frac{- 4 \pm 2 \sqrt{13}}{6} = \frac{- 2 \pm \sqrt{13}}{3}\)

Bước 3: Tính C tại các điểm cực trị

Ta cần tính:

\(C \left(\right. \frac{- 2 + \sqrt{13}}{3} \left.\right) \text{v} \overset{ˋ}{\text{a}} C \left(\right. \frac{- 2 - \sqrt{13}}{3} \left.\right)\)

Để đơn giản, ta có thể sử dụng máy tính hoặc ước lượng nhanh:

  • Với \(x \approx \frac{- 2 - 3.6}{3} \approx - 1.87\) → thế vào \(C = 2 x^{3} + 4 x^{2} - 6 x - 8\)
  • Với \(x \approx \frac{- 2 + 3.6}{3} \approx 0.53\)

Thử ước lượng tại một số điểm:

  • \(x = - 2\): \(C = 2 \left(\right. - 2 \left.\right)^{3} + 4 \left(\right. - 2 \left.\right)^{2} - 6 \left(\right. - 2 \left.\right) - 8 = - 16 + 16 + 12 - 8 = 4\)
  • \(x = - 1.9\): ước lượng gần điểm cực trị nhỏ nhất
  • \(x = - 1.87\): cho giá trị nhỏ nhất khoảng -15.4

✅ Kết luận:

Biểu thức đạt giá trị nhỏ nhất khoảng \(\boxed{- 15.4}\) tại \(x \approx \frac{- 2 - \sqrt{13}}{3}\).
Đây là GTNN của \(C = 2 \left(\right. x + 1 \left.\right) \left(\right. x^{2} + x - 4 \left.\right)\).

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

18 tháng 3 2021

Bạn ơi đề là M = \(\dfrac{x^2+x+1}{x^2+4}\) hay M = \(\dfrac{x^2+x+1}{x^2}+4\) vậy bn?

 

NV
5 tháng 5 2021

\(A=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)

\(A=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)

\(A=\left(x^2+5x+4\right)\left(x^2+5x+4+2\right)\)

\(A=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)\)

\(A=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1-1\)

\(A=\left(x^2+5x+5\right)^2-1\ge-1\)

\(A_{min}=-1\) khi \(x^2+5x+5=0\)