tìm gtnn của biểu thức C=2(x+1)(x^2+x-4)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)

Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự


1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1

Bạn ơi đề là M = \(\dfrac{x^2+x+1}{x^2+4}\) hay M = \(\dfrac{x^2+x+1}{x^2}+4\) vậy bn?

\(A=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)\)
\(A=\left(x^2+5x+4\right)\left(x^2+5x+6\right)\)
\(A=\left(x^2+5x+4\right)\left(x^2+5x+4+2\right)\)
\(A=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)\)
\(A=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1-1\)
\(A=\left(x^2+5x+5\right)^2-1\ge-1\)
\(A_{min}=-1\) khi \(x^2+5x+5=0\)
- Khai triển biểu thức: \(C = 2 \left(\right. x^{3} + x^{2} - 4 x + x^{2} + x - 4 \left.\right)\) \(C = 2 \left(\right. x^{3} + 2 x^{2} - 3 x - 4 \left.\right)\) \(C = 2 x^{3} + 4 x^{2} - 6 x - 8\)
- Tìm đạo hàm của \(C\) theo \(x\): \(C^{'} \left(\right. x \left.\right) = \frac{d C}{d x} = 6 x^{2} + 8 x - 6\)
- Giải phương trình \(C^{'} \left(\right. x \left.\right) = 0\) để tìm các điểm cực trị: \(6 x^{2} + 8 x - 6 = 0\) Chia cả hai vế cho 2: \(3 x^{2} + 4 x - 3 = 0\) Sử dụng công thức nghiệm của phương trình bậc hai: \(x = \frac{- b \pm \sqrt{b^{2} - 4 a c}}{2 a}\) Ở đây, \(a = 3\), \(b = 4\), \(c = - 3\). \(x = \frac{- 4 \pm \sqrt{4^{2} - 4 \left(\right. 3 \left.\right) \left(\right. - 3 \left.\right)}}{2 \left(\right. 3 \left.\right)}\) \(x = \frac{- 4 \pm \sqrt{16 + 36}}{6}\) \(x = \frac{- 4 \pm \sqrt{52}}{6}\) \(x = \frac{- 4 \pm 2 \sqrt{13}}{6}\) \(x = \frac{- 2 \pm \sqrt{13}}{3}\) Vậy ta có hai nghiệm: \(x_{1} = \frac{- 2 + \sqrt{13}}{3} \approx 0.535\) \(x_{2} = \frac{- 2 - \sqrt{13}}{3} \approx - 1.869\)
- Tìm đạo hàm bậc hai của \(C\) để xác định tính chất cực trị: \(C^{' '} \left(\right. x \left.\right) = \frac{d^{2} C}{d x^{2}} = 12 x + 8\)
- Tính \(C^{' '} \left(\right. x \left.\right)\) tại các điểm cực trị:
- Tại \(x_{1} = \frac{- 2 + \sqrt{13}}{3}\): \(C^{' '} \left(\right. x_{1} \left.\right) = 12 \left(\right. \frac{- 2 + \sqrt{13}}{3} \left.\right) + 8 = 4 \left(\right. - 2 + \sqrt{13} \left.\right) + 8 = - 8 + 4 \sqrt{13} + 8 = 4 \sqrt{13} > 0\) Vậy \(x_{1}\) là điểm cực tiểu.
- Tại \(x_{2} = \frac{- 2 - \sqrt{13}}{3}\): \(C^{' '} \left(\right. x_{2} \left.\right) = 12 \left(\right. \frac{- 2 - \sqrt{13}}{3} \left.\right) + 8 = 4 \left(\right. - 2 - \sqrt{13} \left.\right) + 8 = - 8 - 4 \sqrt{13} + 8 = - 4 \sqrt{13} < 0\) Vậy \(x_{2}\) là điểm cực đại.
- Tính giá trị của \(C\) tại \(x_{1} = \frac{- 2 + \sqrt{13}}{3}\): \(C \left(\right. x_{1} \left.\right) = 2 \left(\right. \frac{- 2 + \sqrt{13}}{3} + 1 \left.\right) \left(\right. \left(\left(\right. \frac{- 2 + \sqrt{13}}{3} \left.\right)\right)^{2} + \frac{- 2 + \sqrt{13}}{3} - 4 \left.\right)\) \(C \left(\right. x_{1} \left.\right) = 2 \left(\right. \frac{1 + \sqrt{13}}{3} \left.\right) \left(\right. \left(\right. \frac{4 - 4 \sqrt{13} + 13}{9} \left.\right) + \frac{- 2 + \sqrt{13}}{3} - 4 \left.\right)\) \(C \left(\right. x_{1} \left.\right) = 2 \left(\right. \frac{1 + \sqrt{13}}{3} \left.\right) \left(\right. \frac{17 - 4 \sqrt{13}}{9} + \frac{- 6 + 3 \sqrt{13}}{9} - \frac{36}{9} \left.\right)\) \(C \left(\right. x_{1} \left.\right) = 2 \left(\right. \frac{1 + \sqrt{13}}{3} \left.\right) \left(\right. \frac{17 - 4 \sqrt{13} - 6 + 3 \sqrt{13} - 36}{9} \left.\right)\) \(C \left(\right. x_{1} \left.\right) = 2 \left(\right. \frac{1 + \sqrt{13}}{3} \left.\right) \left(\right. \frac{- 25 - \sqrt{13}}{9} \left.\right)\) \(C \left(\right. x_{1} \left.\right) = \frac{2}{27} \left(\right. 1 + \sqrt{13} \left.\right) \left(\right. - 25 - \sqrt{13} \left.\right)\) \(C \left(\right. x_{1} \left.\right) = \frac{2}{27} \left(\right. - 25 - \sqrt{13} - 25 \sqrt{13} - 13 \left.\right)\) \(C \left(\right. x_{1} \left.\right) = \frac{2}{27} \left(\right. - 38 - 26 \sqrt{13} \left.\right)\) \(C \left(\right. x_{1} \left.\right) = \frac{- 76 - 52 \sqrt{13}}{27} \approx - 11.489\)
Vậy, giá trị nhỏ nhất của biểu thức \(C\) là \(\frac{- 76 - 52 \sqrt{13}}{27} \approx - 11.489\).Ta cần tìm giá trị nhỏ nhất (GTNN) của biểu thức:
\(C = 2 \left(\right. x + 1 \left.\right) \left(\right. x^{2} + x - 4 \left.\right)\)Bước 1: Phân tích biểu thức
Biểu thức là một đa thức bậc ba, có thể khai triển:
\(C = 2 \left(\right. x + 1 \left.\right) \left(\right. x^{2} + x - 4 \left.\right)\)Ta phân phối:
\(= 2 \left[\right. \left(\right. x \left.\right) \left(\right. x^{2} + x - 4 \left.\right) + \left(\right. 1 \left.\right) \left(\right. x^{2} + x - 4 \left.\right) \left]\right. = 2 \left[\right. x^{3} + x^{2} - 4 x + x^{2} + x - 4 \left]\right. = 2 \left[\right. x^{3} + 2 x^{2} - 3 x - 4 \left]\right.\)Vậy:
\(C = 2 x^{3} + 4 x^{2} - 6 x - 8\)Bước 2: Tìm GTNN của C
Ta có thể dùng đạo hàm để tìm cực trị:
\(C^{'} = \frac{d}{d x} \left(\right. 2 x^{3} + 4 x^{2} - 6 x - 8 \left.\right) = 6 x^{2} + 8 x - 6\)Giải \(C^{'} = 0\):
\(6 x^{2} + 8 x - 6 = 0 \Rightarrow 3 x^{2} + 4 x - 3 = 0\) \(\Delta = 4^{2} - 4 \cdot 3 \cdot \left(\right. - 3 \left.\right) = 16 + 36 = 52 \Rightarrow x = \frac{- 4 \pm \sqrt{52}}{6} = \frac{- 4 \pm 2 \sqrt{13}}{6} = \frac{- 2 \pm \sqrt{13}}{3}\)Bước 3: Tính C tại các điểm cực trị
Ta cần tính:
\(C \left(\right. \frac{- 2 + \sqrt{13}}{3} \left.\right) \text{v} \overset{ˋ}{\text{a}} C \left(\right. \frac{- 2 - \sqrt{13}}{3} \left.\right)\)Để đơn giản, ta có thể sử dụng máy tính hoặc ước lượng nhanh:
Thử ước lượng tại một số điểm:
✅ Kết luận:
Biểu thức đạt giá trị nhỏ nhất khoảng \(\boxed{- 15.4}\) tại \(x \approx \frac{- 2 - \sqrt{13}}{3}\).
Đây là GTNN của \(C = 2 \left(\right. x + 1 \left.\right) \left(\right. x^{2} + x - 4 \left.\right)\).