Bài 13 Cho hai đường thẳng xx’ và yy’ cắt nhau tại điểm B. Kể tên các tia có trên hình vẽ. |
|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a. uAo va uBo, oAs va oBs, uAx va uBy, sAx va sBy
b. OCs vs sDy, xCs vs vDo
c.uAx vs vCo, sAx va sCd

bài 1\
qua 2 điểm ta vẽ được 1 đường thẳng.
chọn 1 điểm bất kì trong n điểm. qua điểm đó và (n-1) điểm còn lại ta có (n-1) đường thẳng. làm như vậy với n điểm thì về được n.(n-1) duông thắng. nhưng như vậy số đường thẳng đã được tính 2 lần nên thực chất số đường thẳng có là n.(n-1):2=435 đường thẳng
suy ra n.(n-1)=435x2
n.(n-1)=870
n.(n-1)=30x29
suy ra n=30
vay có 30 diểm
Lấy 1 điểm trong n điểm đã cho nối với n-1 điểm còn lại ta được n-1 đường thẳng.
Làm như vậy với n điểm ta được: n(n-1) đường thẳng.
Mà mỗi đường thẳng được tính 2 lần.
=> Số đường thẳng thực tế là: \(\frac{n\left(n-1\right)}{2}\)
Mà có 435 đường thẳng tạo thành.
=> \(\frac{n\left(n-1\right)}{2}\)= 435
n(n-1) = 870.
Mà 870=30.29
=> n=30
Trường hợp giả định:
Nếu hai đường thẳng \(x x^{'}\) và \(y y^{'}\) cắt nhau tại B, ta có 4 tia xuất phát từ B:
ko có hình không giải đc đâu nha