Gieo một xúc xắc hai lần liên tiếp tính xác suất của biến cố sau
A:"tổng số chấm xuất hiện trong hai lần gieo ko vượt quá 4"
B:"hiệu số chấm xuất hiện trong hai lần gieo bằng 2"
C:"tổng số chấm trên hai mặt gieo chia hết cho 5"
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng số khả năng có thể xảy ra của phép thử là \(n\left( \Omega \right) = {6^3}\)
a) Gọi A là biến cố “Tổng số chấm xuất hiện nhỏ hơn 5”, ta có biến cố đối của A là \(\overline A \): “Tổng số chấm xuất hiện lớn hơn hoặc bằng 5”
Số kết quả thuận lợi cho \(\overline A \) là \(n\left( {\overline A } \right) = 1 + C_3^1 = 4\)
Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{4}{{{6^3}}} = \frac{1}{{54}}\)
Vậy xác suất của biến cố A là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{1}{{54}} = \frac{{53}}{{54}}\)
b) Gọi A là biến cố “Tích số chấm xuất hiện chia hết cho 5”, ta có biến cố đối của A là \(\overline A \): “Tích số chấm xuất hiện không chia hết cho 5”
\(\overline A \) xảy ra khi không có mặt của xúc xắc nào xuất hiện 5 chấm
Số kết quả thuận lợi cho \(\overline A \) là \(n\left( {\overline A } \right) = {5^3}\)
Xác suất của biến cố \(\overline A \) là \(P\left( {\overline A } \right) = \frac{{{5^3}}}{{{6^3}}} = \frac{{125}}{{216}}\)
Vậy xác suất của biến cố A là \(P\left( A \right) = 1 - P\left( {\overline A } \right) = 1 - \frac{{125}}{{216}} = \frac{{91}}{{216}}\)
a: n(omega)=6*6=36
n(A)=6
=>P(A)=6/36=1/6
b: B={(1;5); (1;3); (1;1); (2;2); (2;4); (2;6);...;(6;2); (6;4); (6;6)}
=>n(B)=18
=>P(B)=18/36=1/2
c: C={(1;1); (1;2); (1;3); (1;4); (1;5); (1;6); (2;1); (2;2); (2;3); (2;4); (2;5); (2;6); (3;1); (3;2); (3;3); (3;4); (3;5); (3;6); (4;1); (4;2);...;(4;5); (5;1); (5;2); (5;3); (5;4); (6;1); (6;2); (6;3)}
=>n(C)=30
P(C)=30/36=5/6
\(n_{\Omega}=6^3=216\)
a, A: "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc chia hết cho 3"
\(\overline{A}\) : "Tích các số chấm ở mặt xuất hiện trên 3 con xúc sắc không chia hết cho 3"
Để xuất hiện TH xảy ra biến cố đối của A thì cả 3 con xúc sắc đều ra số chấm không chia hết cho 3, thuộc {1;2;4;5}
=> \(n_{\overline{A}}=4.4.4=64\)
Vậy, XS của biến cố A là:
\(P_{\left(A\right)}=1-P_{\overline{A}}=1-\dfrac{n_{\overline{A}}}{n_{\Omega}}=1-\dfrac{64}{216}=\dfrac{19}{27}\)
b, B: "Tổng các số chấm ở mặt xuất hiện ba con xúc sắc lớn hơn 4"
=> \(\overline{B}\) : "Tổng các số chấm ở mặt xuất hiện trên ba con xúc sắc không lớn hơn 4"
=> \(\overline{B}=\left\{\left(1;1;1\right);\left(2;1;1;\right);\left(1;2;1\right);\left(1;1;2\right)\right\}\Rightarrow n_{\overline{B}}=4\)
Vậy, XS của biến cố B là:
\(P_{\left(B\right)}=1-P_{\overline{B}}=1-\dfrac{n_{\left(B\right)}}{n_{\Omega}}=1-\dfrac{4}{216}=\dfrac{53}{54}\)
Em không hoán vị cho 2 TH còn lại vì khả năng 2 chấm có thể xuất hiện ở từng viên 1 hả?
tham khảo
Kết quả thuận lợi cho biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc là 5" là: 4
Kết quả thuận lợi cho biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc là 10" là: 3
Kết quả thuận lợi cho biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc chia hết cho 5'' là:\(3+4=7\)
Xác suất của biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc chia hết cho 5" là: \(\dfrac{7}{36}\)
\(\Rightarrow C\)
A={(1;2); (1;5); (2;4); (2;1); (3;3); (3;6); (4;2); (4;5); (5;1); (5;4); (6;3); (6;6)}
=>n(A)=12
n(omega)=36
=>P(A)=12/36=1/3
a: n(omega)=36
A={(1;5); (2;5); (3;5); (4;5); (5;5); (6;5)}
=>n(A)=6
=>P(A)=6/36=1/6
b: B={(1;6); (2;5); (3;4); (4;3); (5;2); (6;1)}
=>n(B)=6
=>P(B)=1/6
d: D={(2;1); (2;2); ...; (2;6); (3;1); (3;2); ...;(3;6);(5;1); (5;2);...;(5;6)}
=>P(D)=18/36=1/2
Tổng số kết quả có thể xảy ra của phép thử là \(n(\Omega ) = {6^2}\)
a) Gọi biến cố A “Tổng số chấm xuất hiện lớn hơn hoặc bằng 10” là biến cố đối của biến cố “Tổng số chấm xuất hiện nhỏ hơn 10”
A xảy ra khi số chấm xuất hiện là 5 hoặc 6. Số kết quả thuận lợi cho A là \(n(A) = {2^2}\)
Xác suất của biến cố A là \(P(A) = \frac{{{2^2}}}{{{6^2}}} = \frac{1}{9}\)
Vậy xác suất của biến cố “Tổng số chấm xuất hiện nhỏ hơn 10” là \(1 - \frac{1}{9} = \frac{8}{9}\)
b) Gọi biến cố A: “Tích số chấm xuất hiện không chia hết cho 3” là biến cố đối của biến cố ‘“Tích số chấm xuất hiện chia hết cho 3”
A xảy ra khi mặt xuất hiện trên hai con xúc xắc đều xuất hiện số chấm không chia hết cho 3. Số kết quả thuận lợi cho A là: \(n(A) = {4^2}\)
Xác suất của biến cố A là: \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{{4^2}}}{{{6^2}}} = \frac{4}{9}\)
Vậy xác suất của biến cố “Tích số chấm xuất hiện chia hết cho 3” là \(1 - \frac{4}{9} = \frac{5}{9}\)
tham khảo
A là biến cố "Có 1 số chấm chia hết cho 2, 1 số chấm chia hết cho 3, và không xuất hiện 6 chấm", \(P\left(A\right)=\dfrac{4}{36}=\dfrac{1}{9}\)
B là biến cố "Có ít nhất 1 trong 2 con xúc xắc xuất hiện chấm 6", \(P\left(B\right)=\dfrac{11}{36}\)
\(A\cup B\) là biến cố "Tích số chấm xuất hiện trên 2 con xúc xắc chia hết cho 6".
A và B xung khắc nên \(P\left(A\cup B\right)=P\left(A\right)+P\left(B\right)=\dfrac{5}{12}\)
c
Đây là đề các câu độc lập, không phải chọn phương án đúng em nhé!