\(\frac{\subset4,5\times}{1980\times1981}4,8+15\times246\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


pt <=> (x-5/1990 - 1) + (x-15/1980 - 1) = (x-1980/15 - 1) + (x-1990/5 - 1)
<=> x-1995/1990 + x-1995/1980 = x-1995/15 + x-1995/5
<=> x-1995/15 + x-1995/5 - x-1995/1990 - x-1995/1980 = 0
<=> (x-1995).(1/5+1/15-1/1990-1/1980) = 0
<=> x-1995 = 0 ( vì 1/5 + 1/15 - 1/1990 - 1/1980 > 0 )
<=> x = 1995
Vậy S={1995}
Tk mk nha
Ta có :
\(\frac{x-5}{1990}+\frac{x-15}{1980}=\frac{x-1980}{15}+\frac{x-1990}{5}\)
\(\Leftrightarrow\)\(\left(\frac{x-5}{1990}-1\right)+\left(\frac{x-15}{1980}-1\right)=\left(\frac{x-1980}{15}-1\right)+\left(\frac{x-1990}{5}-1\right)\)
\(\Leftrightarrow\)\(\frac{x-1995}{1990}+\frac{x-1995}{1980}=\frac{x-1995}{15}+\frac{x-1995}{5}\)
\(\Leftrightarrow\)\(\frac{x-1995}{1990}+\frac{x-1995}{1980}-\frac{x-1995}{15}-\frac{x-1995}{5}=0\)
\(\Leftrightarrow\)\(\left(x-1995\right)\left(\frac{1}{1990}+\frac{1}{1980}+\frac{1}{15}+\frac{1}{5}\right)=0\)
Vì \(\frac{1}{1990}+\frac{1}{1980}+\frac{1}{15}+\frac{1}{5}\ne0\)
Nên \(x-1995=0\)
\(\Rightarrow\)\(x=1995\)
Vậy \(x=1995\)
Chúc bạn học tốt ~

x-5/1990+x-15/1980+x-25/1970=x-1990/5+x-1980/15+x-1970/25
<=> (x-5/1990-1)+(x-15/1980-1)+(x-25/1970-1)=(x-1990/5-1)+(x-1980/15-1)+(x-1970/25-1)
<=> x-1995/1990+x-1995/1980+x-1995/1970=x-1995/5+x-1995/15+x-1995/25
<=> (x-1995)(1/1990+1/1980+1/1970-1/5-1/15-1/25)=0
<=> x-1995=0
<=> x=1995

Lời giải:
Ta có \(A=\frac{1}{1.1981}+\frac{1}{2.1982}+...+\frac{1}{25.2005}\)
\(\Rightarrow 1980A=\frac{1980}{1.1981}+\frac{1980}{2.1982}+...+\frac{1980}{25.2005}\)
\(\Leftrightarrow 1980A=\frac{1981-1}{1.1981}+\frac{1982-2}{2.1982}+....+\frac{2005-25}{25.2005}\)
\(\Leftrightarrow 1980A=1-\frac{1}{1981}+\frac{1}{2}-\frac{1}{1982}+...+\frac{1}{25}-\frac{1}{2005}\)
\(1980A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+..+\frac{1}{2005}\right)\) (1)
Lại có:
\(25B=\frac{25}{1.26}+\frac{25}{2.27}+...+\frac{25}{1980.2005}\)
\(\Leftrightarrow 25B=\frac{26-1}{1.26}+\frac{27-2}{2.27}+...+\frac{2005-1980}{1980.2005}\)
\(\Leftrightarrow 25B=1-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+...+\frac{1}{1980}-\frac{1}{2005}\)
\(25B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1980}\right)-\left(\frac{1}{26}+\frac{1}{27}+....+\frac{1}{2005}\right)\)
\(25B=\left(1+\frac{1}{2}+...+\frac{1}{25}\right)-\left(\frac{1}{1981}+\frac{1}{1982}+...+\frac{1}{2005}\right)\) (2)
Từ \((1); (2)\Rightarrow 1980A=25B\Rightarrow \frac{A}{B}=\frac{25}{1980}=\frac{5}{396}\)

Ta có: \(\frac{x-5}{1990}+\frac{x-15}{1980}=\frac{x-1980}{15}+\frac{x-1990}{5}\)
=> \(\left(\frac{x-5}{1990}-1\right)+\left(\frac{x-15}{1980}-1\right)=\left(\frac{x-1980}{15}-1\right)+\left(\frac{x-1990}{5}-1\right)\)
=> \(\frac{x-5-1990}{1990}+\frac{x-15-1980}{1980}=\frac{x-1980-15}{15}+\frac{x-1990-5}{5}\)
=> \(\frac{x-1995}{1990}+\frac{x-1995}{1980}=\frac{x-1995}{15}+\frac{x-1995}{5}\)
=> \(\frac{x-1995}{1990}+\frac{x-1995}{1980}-\frac{x-1995}{15}-\frac{x-1995}{5}=0\)
=> \(\left(x-1995\right)\left(\frac{1}{1990}+\frac{1}{1980}-\frac{1}{15}-\frac{1}{5}\right)=0\)
Vì \(\frac{1}{1990}+\frac{1}{1980}\ne\frac{1}{15}+\frac{1}{5}\) => \(\frac{1}{1990}+\frac{1}{1980}-\frac{1}{15}-\frac{1}{5}\ne0\)
=> x - 1995 = 0
=> x = 1995
\(\frac{x-5}{1990}+\frac{x-15}{1980}=\frac{x-1980}{15}+\frac{x-1990}{5}\)
\(\Leftrightarrow\frac{x-5}{1990}-1+\frac{x-15}{1980}-1-\frac{x-1980}{15}+1-\frac{x-1990}{5}+1=0\)
\(\Leftrightarrow\frac{x-1995}{1990}+\frac{x-1995}{1980}-\frac{x-1995}{15}-\frac{x-1995}{5}=0\)
\(\Leftrightarrow\left(x-1995\right).\left(\frac{1}{1990}+\frac{1}{1980}-\frac{1}{15}-\frac{1}{5}\right)=0\)
<=>x=1995

a: \(\dfrac{40.2\cdot8.1\cdot4.8}{0.048\cdot0.81}=40.2\cdot\dfrac{8.1}{0.81}\cdot\dfrac{4.8}{0.048}\)
\(=40.2\cdot10\cdot100=402\cdot100=40200\)
b: \(\dfrac{45\cdot16-17}{45\cdot15+28}=\dfrac{720-17}{675+28}=\dfrac{703}{703}=1\)

\(\frac{x-5}{1990}-1+\frac{x-15}{1980}-1=\frac{x-1980}{15}-1+\frac{x-1990}{5}-1\)
\(\frac{x-1995}{1990}+\frac{x-1995}{1980}-\frac{x-1995}{15}-\frac{x-1995}{5}=0\)
\(\left(x-1995\right)\left(\frac{1}{1990}+\frac{1}{1980}-\frac{1}{15}-\frac{1}{5}\right)=0\)
Mà \(\frac{1}{1990}+\frac{1}{1980}-\frac{1}{15}-\frac{1}{5}\ne0\)
Nên \(x-1995=0\Leftrightarrow x=1995\)