K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 4 2019

Lời giải:

a)

\(\frac{\sin ^2a+2\cos ^2a-1}{\cot ^2a}=\frac{(\sin ^2a+\cos ^2a)+\cos ^2a-1}{\cot ^2a}=\frac{1+\cos ^2a-1}{\cot ^2a}=\frac{\cos ^2a}{\cot ^2a}=\frac{\cos ^2a}{(\frac{\cos a}{\sin a})^2}=\sin ^2a\)

b)

\(\frac{1-\sin ^2a\cos ^2a}{\cos ^2a}-\cos ^2a=\frac{1}{\cos ^2a}-\sin ^2a-\cos ^2a\)

\(=\frac{\sin ^2a+\cos ^2a}{\cos ^2a}-(\sin ^2a+\cos ^2a)=\tan ^2a+1-1=\tan ^2a\)

c)

\(\frac{\sin ^2a-\tan ^2a}{\cos ^2a-\cot ^2a}=\frac{\sin ^2a-\frac{\sin ^2a}{\cos ^2a}}{\cos ^2a-\frac{\cos ^2a}{\sin ^2a}}=\frac{\sin ^4a(\cos ^2a-1)}{\cos ^4a(\sin ^2a-1)}\)

\(=\frac{\sin ^4a(-\sin ^2a)}{\cos ^4a(-\cos ^2a)}=\frac{\sin ^6a}{\cos ^6a}=\tan ^6a\)

AH
Akai Haruma
Giáo viên
2 tháng 12 2023

Bạn muốn chứng minh cái gì nhỉ?

\(C=\dfrac{sin^2a-tan^2a}{cos^2a-cot^2a}\)

\(=\dfrac{sin^2a-\dfrac{sin^2a}{cos^2a}}{cos^2a-\dfrac{cos^2a}{sin^2a}}\)

\(=\dfrac{sin^2a\left(1-\dfrac{1}{cos^2a}\right)}{cos^2a\left(1-\dfrac{1}{sin^2a}\right)}=tan^2a\cdot\dfrac{\dfrac{cos^2a-1}{cos^2a}}{\dfrac{sin^2a-1}{sin^2a}}\)

\(=tan^2a\cdot\left(\dfrac{cos^2a-1}{cos^2a}\cdot\dfrac{sin^2a}{sin^2a-1}\right)\)

\(=tan^2a\left(\dfrac{1-cos^2a}{1-sin^2a}\cdot tan^2a\right)\)

\(=tan^2a\cdot\left(\dfrac{sin^2a}{cos^2a}\cdot tan^2a\right)=tan^2a\cdot\left(tan^2a\cdot tan^2a\right)\)

\(=tan^6a\)

21 tháng 8 2018

ĐKXĐ:     \(a\ne\pm\frac{1}{2}\)

\(\left(\frac{2a-1}{2a+1}-\frac{2a-3}{2a-1}\right):\frac{2a-1}{2a+1}\)

\(=\left(\frac{\left(2a-1\right)^2}{\left(2a+1\right)\left(2a-1\right)}-\frac{\left(2a-3\right)\left(2a+1\right)}{\left(2a-1\right)\left(2a+1\right)}\right).\frac{2a+1}{2a-1}\)

\(=\left(\frac{4a^2-4a+1}{\left(2a+1\right)\left(2a-1\right)}-\frac{4a^2-4a+3}{\left(2a+1\right)\left(2a-1\right)}\right).\frac{2a+1}{2a-1}\)

\(=\frac{-2}{\left(2a+1\right)\left(2a-1\right)}.\frac{2a+1}{2a-1}=\frac{-2}{\left(2a-1\right)^2}\)

1:

a: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2zx+2yz\)

b: \(\left(x-y+z\right)^2=x^2+y^2+z^2-2xy+2xz-2yz\)

c: \(\left(x-y-z\right)^2=x^2+y^2+z^2-2xy-2xz+2yz\)

2 tháng 9 2021

Bài 2: tất cả đều ở dạng tích rồi mà

26 tháng 5 2022

\(\dfrac{\sin^2a-\tan^2a}{\cos^2a-\cot^2a}=\dfrac{\sin^2a-\dfrac{\sin^2a}{\cos^2a}}{\cos^2a-\dfrac{\cos^2a}{\sin^2a}}=\dfrac{\dfrac{\sin^2a\cos^2a-\sin^2a}{\cos^2a}}{\dfrac{\cos^2a\sin^2a-\cos^2a}{\sin^2a}}=\dfrac{\sin^2a\sin^2a\left(\cos^2a-1\right)}{\cos^2a\cos^2a\left(\sin^2a-1\right)}\)

\(=\dfrac{\sin^4a\left(\cos^2a-\cos^2a-\sin^2a\right)}{\cos^4a\left(\sin^2a-\cos^2a-\sin^2a\right)}=\dfrac{\sin^4a\left(-\sin^2a\right)}{\cos^4a\left(-\cos^2a\right)}\)

\(=\dfrac{-\sin^6a}{-\cos^6a}=\dfrac{\sin^6a}{\cos^6a}=\tan^6a\)

26 tháng 5 2022

\(\dfrac{1-\sin^2a\cos^2a}{\sin^2a}-\sin^2a\)

\(=\dfrac{1-\sin^2a\cos^2a-\sin^2a\sin^2a}{\sin^2a}\)

\(=\dfrac{1-\sin^2a\left(\cos^2a+\sin^2a\right)}{\sin^2a}\)

\(=\dfrac{\cos^2a+\sin^2a-\sin^2a}{\sin^2a}\)

\(=\dfrac{\cos^2a}{\sin^2a}=\cot^2a\)