K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5

(x+1)(3x-4)=0

Suy ra x+1=0 hoặc 3x-4=0

x=-1 3x=4

x=4/3

Vậy x=-1 hoặc x=4/3

21 tháng 6 2023

\(2\left(3x-2\right)-3\left(x-2\right)=-1\)

\(6x-4-3x+6=-1\)

\(3x+2=-1\)

\(3x=-1-2\)

\(3x=-3\)

\(x=-1\)

\(2\left(3-3x^2\right):3x\left(2x-1\right)=9\)

\(6-6x^2:6x^2-3x=9\)

\(6-x^2-3x=9\)

\(-x^2-3x+6=9\)

\(-x^2-3x=5\)

\(-x\left(x+3\right)=5\)

\(x=-5;x=2\)

`@` `\text {Ans}`

`\downarrow`

`a)`

`6 - 2x=0`

`\Rightarrow 2x = 6-0`

`\Rightarrow 2x=6`

`\Rightarrow x=6/2`

`\Rightarrow x=3` 

Vậy, nghiệm của đa thức là `x=3`

`b)`

\(x^{2023}+8x^{2020}?\)

\(x^{2023}+8x^{2020}=0\)

`\Rightarrow `\(x^{2020}\left(x^3+8\right)=0\)

`\Rightarrow `\(\left[{}\begin{matrix}x^{2020}=0\\x^3+8=0\end{matrix}\right.\)

`\Rightarrow `\(\left[{}\begin{matrix}x=0\\x^3=-8\end{matrix}\right.\)

`\Rightarrow `\(\left[{}\begin{matrix}x=0\\x^3=\left(-2\right)^3\end{matrix}\right.\)

`\Rightarrow `\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy, nghiệm của đa thức là `x={0;-2}.`

19 tháng 6 2023

a) Để tìm nghiệm của đa thức 6 - 2x, ta giải phương trình sau: 6 - 2x = 0

Đưa -2x về bên trái và 6 về bên phải: -2x = -6

Chia cả hai vế của phương trình cho -2: x = 3

Vậy nghiệm của đa thức 6 - 2x là x = 3.

b) Để tìm nghiệm của đa thức x^2023 + 8x^2020, ta đặt đa thức bằng 0: x^2023 + 8x^2020 = 0

Chúng ta có thể nhân chung cho x^2020 để thu được: x^2020(x^3 + 8) = 0

Điều này đồng nghĩa với: x^2020 = 0 hoặc x^3 + 8 = 0

Nghiệm của phương trình x^2020 = 0 là x = 0.

Đối với phương trình x^3 + 8 = 0, chúng ta có thể sử dụng công thức Viète để tìm nghiệm. Tuy nhiên, trong trường hợp này, chúng ta có thể nhận thấy rằng phương trình x^3 + 8 = 0 có một nghiệm rõ ràng là x = -2.

Vậy nghiệm của đa thức x^2023 + 8x^2020 là x = 0 và x = -2.

15 tháng 6 2023

P(\(x\)) = \(x^4\) + 3\(x^2\) - 4033 

P(\(x\)) = \(x^4\) + 2.\(\dfrac{3}{2}\)\(x^2\) + \(\dfrac{9}{4}\) - \(\dfrac{16141}{4}\)

P(\(x\)) = (\(x^2\) + \(\dfrac{3}{2}\))2 - \(\dfrac{16141}{4}\)

P(\(x\)) = 0 ⇔ (\(x^2\) + \(\dfrac{3}{2}\))2 - \(\dfrac{16141}{4}\) = 0

              ⇒ (\(x^2\) + \(\dfrac{3}{2}\))2 = \(\dfrac{16141}{4}\) 

                     \(x^2\) + \(\dfrac{3}{2}\) = - \(\sqrt{\dfrac{16141}{4}}\) (loại)

                      \(x^2\) + \(\dfrac{3}{2}\) = \(\sqrt{\dfrac{16141}{4}}\) 

                     \(x^2\)  = \(\sqrt{\dfrac{16141}{4}}\) - \(\dfrac{3}{2}\) > 0

                     \(x\) = \(\mp\) \(\sqrt{\sqrt{\dfrac{16141}{4}}-\dfrac{3}{2}}\)

      Vậy việc chứng minh: P(\(x\)) vô nghiệm là không xảy ra 

15 tháng 6 2023

Sửa đề : `P(x)=x^{4}+3x^{2}+4033`

Ta thấy : `x^{4},3x^{2}\ge0` với mọi `x`

`=>x^{4}+3x^{2}\ge0`

`=>P(x)=x^{4}+3x^{2}+4033\ge 4033>0`

Vậy `P(x)` vô nghiệm ( Do không có giá trị x thỏa mãn để `P(x)=0` )

17 tháng 10 2021

giúp mình với cảm ơn trước nha

 

18 tháng 4 2023

a/+b/\(A\left(x\right)=2x^5+2-6x^2-3x^3+4x^5\)
\(=\left(2x^5+4x^5\right)-3x^3-6x^2+2\)
\(=6x^5-3x^3-6x^2+2\)
c/Bậc của \(A\left(x\right)\) là 5
d/\(A\left(1\right)=6\cdot1^5-3\cdot1^3-6\cdot1^2+2\)
\(=6-3-6+2\)
\(=-1\)
\(A\left(-2\right)=6\cdot\left(-2\right)^5-3\cdot\left(-2\right)^3-6\cdot\left(-2\right)^2+2\)
\(=6\cdot\left(-32\right)-3\cdot\left(-8\right)-6\cdot4+2\)
\(=-192-\left(-24\right)-24+2\)
\(=-190\)

18 tháng 4 2023

a) và b)

A(x) = 2x⁵ + 2 - 6x² - 3x³ + 4x⁵

= (2x⁵ + 4x⁵) - 3x³ - 6x² + 2

= 6x⁵ - 3x³ - 6x² + 2

c) Bậc của A(x) là 5

d) A(1) = 6.1⁵ - 3.1³ - 6.1² + 2

= 6.1 - 3.1 - 6.1 + 2

= 6 - 3 - 6 + 2

= -1

A(2) = 6.2⁵ - 3.2³ - 6.2² + 2

= 6.32 - 3.8 - 6.4 + 2

= 192 - 24 - 24 + 2

= 146

NV
2 tháng 7 2021

ĐKXĐ: \(0\le x\le1\)

Ta có:

\(x+1=\sqrt{x+x^2}+\sqrt{x-x^2}\)

\(\Leftrightarrow\left(x+1\right)^2=\left(\sqrt{x+x^2}+\sqrt{x-x^2}\right)^2\le2\left(x+x^2+x-x^2\right)\)

\(\Leftrightarrow x^2+2x+1\le4x\)

\(\Leftrightarrow\left(x-1\right)^2\le0\)

\(\Leftrightarrow x-1=0\)

\(\Rightarrow x=1\)

Thế vào pt ban đầu không thỏa mãn

Vậy pt đã cho vô nghiệm

2 tháng 7 2021

dấu tương đương thứ nhất từ trên xuống tắt quá ạ rep lại e đi  ạ

 

 

25 tháng 3 2019

mình mới đì cắm trại về hôm qua

25 tháng 3 2019

bn đc ở lại mà mk k đc ở lại

12 tháng 6 2023

Điều kiện \(x\ge0\) 

\(\sqrt{x}\) ≥ 0 nên \(\sqrt{x}+1\ge1\) ⇒ (\(\sqrt{x}+1\))99 ≥ 1

⇒ B= (\(\sqrt{x}+1\))99 + 2022 ≥ 1+ 2022 = 2023

B (min)=2023⇔ \(\sqrt{x}=0\) ⇒ \(x=0\)

Kết luận giá trị nhỏ nhất của B là 2023 xảy ra khi \(x=0\)