So sánh các cạnh của tam giác ABC Biết góc ngoài tại đỉnh A = 100 độ góc B = 55 Độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: góc BAC=180-120=60 độ
góc ABE=70/2=35 độ
góc AEB=180-60-35=85 độ
b: góc ABE<góc BAE<góc AEB
=>AE<BE<AB
c: góc ECB=180-70-60=50 độ
góc BEC=180-85=95 độ
Vì góc EBC<góc ECB<góc BEC
nên EC<EB<BC

A B C K I y x
Ta có:
ICK=ICB+KCB
=1/2ACB+1/2BCx
=1/2 180=90
Hoàn toàn tương tự thì:IBK=90
Xét tứ giác BICK có:
CIB+IBC+ICB+CKB=360
=>CIB=360-(IBC+ICB+CKB)=360-235=125
Vậy các góc của tứ giác BICK là CIB=125, CKB=55
IBK=ICK=90

c) Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng ba góc trong một tam giác)
\(\Leftrightarrow\widehat{B}+\widehat{C}=180^0-40^0=140^0\)
Ta có: \(\widehat{B}:\widehat{C}=3:4\)(gt)
nên \(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}\)
mà \(\widehat{B}+\widehat{C}=140^0\)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{\widehat{B}}{3}=\dfrac{\widehat{C}}{4}=\dfrac{\widehat{B}+\widehat{C}}{3+4}=\dfrac{140^0}{7}=20^0\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{\widehat{B}}{3}=20^0\\\dfrac{\widehat{C}}{4}=20^0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\widehat{B}=60^0\\\widehat{C}=80^0\end{matrix}\right.\)
Xét ΔABC có \(\widehat{A}< \widehat{B}< \widehat{C}\left(40^0< 60^0< 80^0\right)\)
mà cạnh đối diện với \(\widehat{A}\) là cạnh BC
cạnh đối diện với \(\widehat{B}\) là cạnh AC
và cạnh đối diện với \(\widehat{C}\) là cạnh AB
nên BC<AC<AB

a, Áp dụng định lý tổng 3 góc của tam giác vào tam giác ABC có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow100^0+20^0+\widehat{C}=180^0\)
\(\Rightarrow\widehat{C}=180^0-100^0-20^0=60^0\)
\(\Rightarrow\widehat{A}>\widehat{C}>\widehat{B}\)
Áp dụng quan hệ giữa cạnh và góc đối diện \(\Rightarrow BC>AB>AC\)
b) Vì AB>AC nên HB>HC(theo quan hệ giữa đường xiên và hình chiếu)

Xét tam giác ABC có :
A + B + C = 180 độ ( tổng 3 góc 1 tam giác )
100 độ + 50 độ + C = 180 độ
150 độ + C = 180 độ
C = 180 độ - 150 độ
C = 30 độ
Do 30 độ < 50 độ < 100 độ
=> C < B < A
=> AB < AC < BC ( quan hệ góc đối diện và cạnh lớn hơn )
TK mk nha !!!
So sánh các cạnh của tam giác ABC, biết góc A= 100 độ, góc B= 50 độ
=>góc c = 30 độ
=>A<B<C
==>BC<AC<AB

B A C 1 2
Ta có : ^A + ^B + ^C1 = 1800
<=> 450 + 550 + ^C1 = 1800
<=> ^C1 = 1800 - 450 - 550 = 800
Suy ra : C1 + C2 = 1800
<=> C2 = 1800 - C1 = 1800 - 800 = 1000
Vậy số đo góc ngoài tại đỉnh C là 1000

Ta có :
A + B = 120 (1)
A - B = 30 => A = 30 + B (2)
Thay (2) vào (1) , ta có :
30 + B + B = 120
30 + 2B = 120
2B = 90
=> B = 45
Thay B vào lại (1) ,ta có :
A + B = 120
=> A + 45 = 120
=> A = 75
Áp dụng tổng 3 góc trong một tam giác ,ta có :
A + B + C = 180
75 + 45 + C = 180
=> C = 60
Vậy A = 75
B = 45
C = 60

a: góc C=180-60-80=40 độ
góc BAD=góc CAD=60/2=30 độ
góc ADB=180-80-30=70 độ
b: vì góc BAD<góc ADB<góc ABD
nên BD<AB<AD
c: góc ADC=180-70=110 độ
Vì góc ADC>góc C>góc DAC
nên AC>AD>CD
BC>AC>AB
\(\hat{A}=180^0-100^0=80^0\)
ΔABC có \(\hat{A}+\hat{B}+\hat{C}=180^0\)
=>\(\hat{C}=180^0-80^0-55^0=45^0\)
Xét ΔABC có \(\hat{A}>\hat{B}>\hat{C}\)
mà BC,AC,AB lần lượt là cạnh đối diện của các góc BAC,ABC,ACB
nên BC>AC>AB