Cho S = 3/10 + 3/11 + 3/12 + 3/13 + 3/14
CM : 1<S<2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/10>3/15
3/11>3/15
3/12>3/15
3/13>3/15
3/14>3/15
=>S>3/15*5=15/15=1
3/11<3/10
3/12<3/10
3/13<3/10
3/14<3/10
=>3/11+3/12+3/13+3/14+3/10<3/10*5=15/10=3/2<2
=>1<S<2
\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\)
\(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}< \frac{3}{9}+\frac{3}{9}+\frac{3}{9}+\frac{3}{9}+\frac{3}{9}=\frac{15}{9}< \frac{18}{9}=2\)
Suy ra đpcm.
S < 3/10 +3/10 +3/10 + 3/10 + 3/10 = 15/ 10 < 20/10 =2
\(S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
\(\Rightarrow S< \dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}\)
\(\Rightarrow S< \dfrac{15}{10}< 2\)
Lại có \(S>\dfrac{3}{14}+\dfrac{3}{14}+\dfrac{3}{14}+\dfrac{3}{14}+\dfrac{3}{14}\)
\(\Rightarrow S>\dfrac{15}{14}>1\)
\(\Rightarrow1< S< 2\)
Ta có: S =3/10+3/11+3/12+3/13+3/14 = 3.(1/10+1/11+1/12+1/13+1/14) > 3.(1/15 + 1/15 + 1/15 + 1/15 + 1/15) = 3.5/15 = 1 => S > 1 (1)
S=3/10+3/11+3/12+3/13+3/14 = 3.(1/10+1/11+1/12+1/13+1/14) < 3.(1/10 + 1/10 + 1/10 + 1/10 + 1/10) = 3.5/10 = 3/2<2 =>S <2 (2)
Từ (1) va (2)
=> 1 < S < 2 (đpcm).
Chúc bạn học tập tốt :)
Ta có: \(\dfrac{3}{10}>\dfrac{3}{15}\)
\(\dfrac{3}{11}>\dfrac{3}{15}\)
\(\dfrac{3}{12}>\dfrac{3}{15}\)
\(\dfrac{3}{13}>\dfrac{3}{15}\)
\(\dfrac{3}{14}>\dfrac{3}{15}\)
Do đó: \(\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}>\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}+\dfrac{3}{15}=1\)
hay 1<S(1)
Ta có: \(\dfrac{3}{11}< \dfrac{3}{10}\)
\(\dfrac{3}{12}< \dfrac{3}{10}\)
\(\dfrac{3}{13}< \dfrac{3}{10}\)
\(\dfrac{3}{14}< \dfrac{3}{10}\)
Do đó: \(\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}< \dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}+\dfrac{3}{10}=\dfrac{12}{10}\)
\(\Leftrightarrow S< \dfrac{15}{10}=\dfrac{3}{2}< 2\)(2)
Từ (1) và (2) suy ra 1<S<2(đpcm)
\(S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}\)
Ta thấy:
\(\dfrac{3}{10}>\dfrac{3}{15}\\\dfrac{3}{11}>\dfrac{3}{15}\\ \dfrac{3}{12}>\dfrac{3}{15}\\ \dfrac{3}{13}>\dfrac{3}{15}\\ \dfrac{3}{14}>\dfrac{3}{15} \)
\(\Rightarrow S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}>5\cdot\dfrac{3}{15}\\ S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}>1\left(1\right)\)
Mặt khác:
\(\dfrac{3}{10}< \dfrac{3}{9}\\ \dfrac{3}{11}< \dfrac{3}{9}\\ \dfrac{3}{12}< \dfrac{3}{9}\\ \dfrac{3}{13}< \dfrac{3}{9}\\ \dfrac{3}{14}>\dfrac{3}{9}\)
\(\Rightarrow S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}< 5\cdot\dfrac{3}{9}\\ S=\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}+\dfrac{3}{13}+\dfrac{3}{14}< \dfrac{5}{3}< 2\left(2\right)\)
Từ (1) và (2) ta có: \(1< S< 2\)
- Để chứng minh \(1 < S < 2\) với \(S = \frac{3}{10} + \frac{3}{11} + \frac{3}{12} + \frac{3}{13} + \frac{3}{14}\), ta sẽ chứng minh từng vế của bất đẳng thức một:
- Chứng minh \(S > 1\):
- Ta có: \(S = \frac{3}{10} + \frac{3}{11} + \frac{3}{12} + \frac{3}{13} + \frac{3}{14}\)
- Ta thấy rằng: \(\frac{3}{10} > \frac{3}{15} \frac{3}{11} > \frac{3}{15} \frac{3}{12} > \frac{3}{15} \frac{3}{13} > \frac{3}{15} \frac{3}{14} > \frac{3}{15}\)
- Do đó: \(S > \frac{3}{15} + \frac{3}{15} + \frac{3}{15} + \frac{3}{15} + \frac{3}{15} = 5 \cdot \frac{3}{15} = 5 \cdot \frac{1}{5} = 1\) Vậy \(S > 1\).
- Chứng minh \(S < 2\):
- Ta có: \(S = \frac{3}{10} + \frac{3}{11} + \frac{3}{12} + \frac{3}{13} + \frac{3}{14}\)
- Ta thấy rằng: \(\frac{3}{10} < \frac{3}{10} \frac{3}{11} < \frac{3}{10} \frac{3}{12} < \frac{3}{10} \frac{3}{13} < \frac{3}{10} \frac{3}{14} < \frac{3}{10}\)
- Do đó: \(S < \frac{3}{10} + \frac{3}{10} + \frac{3}{10} + \frac{3}{10} + \frac{3}{10} = 5 \cdot \frac{3}{10} = \frac{15}{10} = \frac{3}{2} = 1.5 < 2\) Tuy nhiên, cách này không đủ mạnh để chứng minh \(S < 2\). Ta cần một cách tiếp cận khác.
- Ta có thể so sánh với \(\frac{3}{8}\) thay vì \(\frac{3}{10}\) \(\frac{3}{10} < \frac{3}{8} \frac{3}{11} < \frac{3}{8} \frac{3}{12} < \frac{3}{8} \frac{3}{13} < \frac{3}{8} \frac{3}{14} < \frac{3}{8}\) Như vậy \(S < 5 \cdot \frac{3}{8} = \frac{15}{8} = 1.875 < 2\) Vậy \(S < 2\).
- Từ hai chứng minh trên, ta có \(1 < S < 2\).