LÀM GIÚP EM Ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến. Ví dụ: 2x3y2,...
3. Để cộng (hay trừ) ác đơn thức đồng dạng, ta cộng ( hay trừ ) các hệ số với nhau và giữ nguyên phần biến.
4. Khi đa thức P (x) có giá trị bằng 0 thì ta nói a là một nghiệm của đa thức đó.
Câu 1 mình không biết.
Câu 1:
2x^3y^2
3x^6y^3
4x^5y^9
6x^8y^3
7x^4y^8
Câu 2:
Hai đơnthức đồng dạng là hai đơn thức có hệ số khác không và cùng phần biến
VD:
2xyz^3 và 3xyz^3
Câu 3:
Để cộng trừ hai đơn thức đồng dạng ta giữ nguyên phần biến và cộng trừ phần hệ số
Câu 4:
Số a được gọi là nghiệm của đa thức khi
Nếu tại x=a đa thức p(x) có giá trị bằng không thì ta nói a là một nghiệm của đa thức p(x)
1/ Cộng 2 đơn thức:
B1: Viết liên tiếp các số hạng của 2 dơn thúc đó cùng với dấu của chúng
B2: Thu gọn các số hạng đồng dạng(nếu có).
- Trừ 2 đơn thức:
B1: Viết các số hạng của đa thức thứ nhất cùng với dấu của chúng.
B2: Viết tiếp các số hạng của đa thúc thứ 2 với dấu ngược lại.
B3: Thu gọn các số hạng đồng dạng(nếu có).
2/ Nếu tại x=a, đa thức P(x) có giá trị bằng 0 thì ta nói rằng a là một nghiệm của đa thức.
a) \(xy^2\): hệ số là 1; bậc là 3.
\(5x^3y^{ }\) : hệ số là 5; bậc là 4.
\(4x^2y^3\): hệ số là 4; bậc là 5.
\(2x^6y^{10}\) : hệ số là 2; bậc là 16.
\(3x^7y^5\) : hệ số là 3; bậc là 12.
b) Hai đơn thức đồng dạng là hai đơn thức có hệ số khác không và có cùng phần biến.
VD: \(xy^2\) và \(\dfrac{1}{2}xy^2\)
\(3x^2y^2\) và \(\dfrac{2}{3}x^2y^2\) ...
c) Quy tắc: Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.
d) Đa thức là một đơn thức hoặc một tổng của hai hay nhiều đơn thức. Mỗi đơn thức trong tổng gọi là một hạng tử của đa thức đó.
\(2x^2y^3z^4+3x^3y^2+\dfrac{1}{2}x^6y^7\)
=> Bậc của đa thức là 7.
e) A(x) = \(10x^5+4x^4+3x^3+5x^2+\left(-1\right)\)
f) Cho đa thức P(x)
Nếu tại x = a đa thức P(x) có giá trị bằng 0 thì ta nói a (hoặc x = a) là một nghiệm của đa thức P(x).
Có j sai thì bn cho mk xin ý kiến nha, đúng thì tick giúp mk nha! Chúc bn học tốt!
Viết đa thức P(x) = 5x3 – 4x2 +7x – 2 dưới dạng tổng của hai đa thức một biến.
Có nhiều cách viết, ví dụ:
Cách 1: Nhóm các hạng tử của đa thức P(x) thành 2 đa thức khác
P(x) = 5x3 – 4x2 +7x – 2 = (5x3 – 4x2) + (7x – 2)
⇒ P(x) là tổng của hai đa thức một biến là: 5x3 – 4x2 và 7x – 2
P(x) = 5x3 – 4x2 +7x – 2 = 5x3 + (– 4x2 + 7x– 2)
⇒ P(x) là tổng của hai đa thức một biến là: 5x3 và – 4x2 + 7x– 2
Cách 2: Viết các hạng tử của đa thức P(x) thành tổng hay hiệu của hai đơn thức. Sau đó nhóm thành 2 đa thức khác.
Ví dụ: Viết 5x3 = 4x3 + x3; – 4x2 = – 5x2 + x2
Nên: P(x) = 5x3 – 4x2 +7x – 2 = 4x3 + x3 – 5x2 + x2 +7x – 2
P(x) = (4x3 – 5x2 + 7x) + (x3 + x2 – 2)
⇒ P(x) là tổng của hai đa thức một biến là: 4x3 – 5x2 + 7x và x3 + x2 – 2.
a)P(x)=(5x3-4x2)+(7x-2)
b)P(x)=5x3+7x-4x2-2=(5x3+7x)-(4x2+2)
...........
Muốn nhân một đa thức với một đa thức, ta nhân mỗi đơn thức của đa thức này với từng đơn thức của đa thức kia rồi cộng các tích với nhau.
Viết đa thức P(x) = 5x3 – 4x2 + 7x - 2 dưới dạng:
a) Tổng của hai đa thức một biến.
5x3 – 4x2 + 7x - 2 = (5x3 – 4x2) + (7x - 2)
b) Hiệu của hai đa thức một biến.
5x3 – 4x2 + 7x - 2 = (5x3 + 7x) - (4x2 + 2)
Chú ý: Đáp số ở câu a; b không duy nhất, các bạn có thể tìm thêm đa thúc khác.
Bạn Vinh nói đúng: Ta có thể viết đa thức đã cho thành tổng của hai đa thúc bậc 4 chẳng hạn như:
5x3 – 4x2 + 7x - 2 = (2x4 + 5x3 + 7x) + (– 2x4 – 4x2 - 2).
đa thức P(x) = 5x3 – 4x2 + 7x - 2
dưới dạng: a) Tổng của hai đa thức một biến. 5x3 – 4x2 + 7x - 2 = (5x3 – 4x2 ) + (7x - 2)
b) Hiệu của hai đa thức một biến. 5x3 – 4x2 + 7x - 2 = (5x3 + 7x) - (4x2
còn lại bn tự làm nhé
:ư3
Bài 1:
Thực hiện phép tính:
a; (\(x^3\) + 2\(x^2\) - 5\(x\) - 7) + (\(x^3\) + 5\(x+11\))
= \(x^3\) + 2\(x^2\) - 5\(x\) - 7 + \(x^3\) + 5\(x+11\)
= (\(x^3+x^3\)) + (-5\(x\) + 5\(x\)) + 2\(x^2\) + (11 - 7)
= 2\(x^3\) + 0 + 2\(x^2\) + 4
= 2\(x^3\) + 2\(x^2\) + 4