tính giá trị A = 2020X - 2022X^5+X^3 tại X=2021
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Thay `x=2021` vào A: `A=2020.2021-2022 .2021^2 +2021^3=-2021`

\(x^5-2022x^4+2020x^3+2020x^2-2020x-2021\)
=\(x^5-x^4-2021x^4+2021x^3-x^3+x^2+2021x^2-2021x+x-1-2020\)
=\(x^4\left(x-1\right)-2021x^3\left(x-1\right)-x^2\left(x+1\right)+2021x\left(x-1\right)+\left(x-1\right)-2020\)
=\(\left(x^4-2021x^3-x^2+2021x+1\right).\left(x-1\right)-2020\)
=\(\left[x^3\left(x-2021\right)-x\left(x-2021\right)+1\right]\left(x-1\right)-2020\)
=\(\left[\left(x^3-x\right).\left(x-2021\right)+1\right]\left(x-1\right)-2020\)*
vì x-2021 luôn bằng 0 \(\Rightarrow\left[\left(x^3-x\right).0+1\right]=1\)
*=1.(2021-1)-2020=0
đây nha bạn //

\(Q\left(x\right)=x^{101}-2020x^{100}-2022x^{99}+2022x^{98}+x-2021\)
\(=x^{100}\left(x-2021\right)+x^{99}\left(x-2021\right)-x^{98}\left(x-2021\right)+x^{98}+x-2021\)
\(Q\left(2021\right)=0+0-0+2021^{98}+0=2021^{98}\)

Ta có: \(x=2021\Rightarrow2020=x-1\)
Thay vào được:
\(A=x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x\)
\(A=x^4-x^4+x^3-x^3+x^2-x^2+x\)
\(A=x=2021\)
Vậy A = 2021
Ta có: \(x=2021\)\(\Rightarrow x-1=2020\)
Thay \(x-1=2020\)vào biểu thức A ta được:
\(A=x^4-\left(x-1\right)x^3-\left(x-1\right)x^2-\left(x-1\right)x\)
\(=x^4-x^4+x^3-x^3+x^2-x^2+x\)
\(=x=2021\)

\(x=2021\Leftrightarrow x+1=2022\\ \Leftrightarrow P=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x\\ P=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x\\ P=0\)
\(P=x^5-2022x^4+2022x^3-2022x^2+2022x-2021=x^4\left(x-2021\right)-x^3\left(x-2021\right)+x^2\left(x-2021\right)-x\left(x-2021\right)+\left(x-2021\right)\)
\(=\left(x-2021\right)\left(x^4-x^3+x^2-x+1\right)\)
\(=\left(2021-2021\right)\left(x^4-x^3+x^2-x+1\right)=0\)

\(M=\left(x^5-2021x^4\right)-\left(x^4-2021x^3\right)+\left(x^3-2021X^2\right)-\left(x^2-2021x\right)+\left(x-2021\right)-900=-900\)
Ta có: x=2021
nên x+1=2022
Ta có: \(M=x^5-2022x^4+2022x^3-2022x^2+2022x-2921\)
\(=x^5-x^4\left(x+1\right)+x^3\left(x+1\right)-x^2\left(x+1\right)+x\left(x+1\right)-2921\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2921\)
\(=x-2921=-900\)

\(D=4x^2-2x+3x\left(x-5\right)=4x^2-2x+3x^2-15x=7x^2-17x=7\left(-1\right)^2-17\left(-1\right)=24\)
\(E=x^{10}-2020x^9+2020x^8-2020x^7+...+2020x^2-2020x=x^9\left(x-2019\right)-x^8\left(x-2019\right)+x^7\left(x-2019\right)-...-x^2\left(x-2019\right)+x\left(x-2019\right)-x=x^9\left(2019-2019\right)-...+x\left(2019-2019\right)-2019=-2019\)
Cho biểu thức:
\(A = 2020 X - 2022 X^{5} + X^{3}\)và giá trị \(X = 2021\).
Bước 1: Thay \(X = 2021\) vào biểu thức
\(A = 2020 \times 2021 - 2022 \times \left(\right. 2021 \left.\right)^{5} + \left(\right. 2021 \left.\right)^{3}\)Bước 2: Tính các phần tử
Bước 3: Nhận xét
Với số \(X = 2021\), các số mũ cao như \(X^{5}\) sẽ rất lớn, khiến việc tính toán trực tiếp bằng tay hoặc máy tính cầm tay thông thường là không khả thi.
Gợi ý:
Nếu bạn muốn, mình có thể giúp bạn rút gọn biểu thức hoặc tìm cách tính gần đúng. Bạn có thể cho biết thêm yêu