Cho tam giác QNP,có QN=QP,F thuộc QN;E thuộc QP.QF-QE.NE cắt PF tại H.a)tam giác QEN=QFP và NE=PF b)HN=HP c)góc NQH=góc PQH QH vuông NP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Δ RPQ và Δ RNQ có cùng đường cao.
Gọi m là độ dài đường vuông góc kẻ từ Q đến NP.

a: Xet ΔAEB và ΔAFC có
góc AEB=góc AFC
góc A chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE/AB=AF/AC
b: Xét ΔAEF và ΔABC co
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC

a)
Do \(\triangle ABC \) cân ( \(AB=AC\) )
\(\Rightarrow \widehat{ABC} = \widehat{ACB}\)
Mà \(BE ; CF\) lần lượt là đường phân giác của \(\widehat{ABC} ; \widehat{ACB}.\)
\(\Rightarrow \widehat{ABE} = \widehat{ACF} \)
Xét \(\triangle ABE\) và \(\triangle ACF\) ta có :
\(AB = AC\) ( gt )
\(\widehat{ABC}\) chung
\(\widehat{ABE} = \widehat{ACF} \) ( cmt )
\(\Rightarrow \) \(\triangle ABE\) \(=\) \(\triangle ACF\) ( g.c.g )

a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường trung trực
hay AH là trục đối xứng của ΔABC
b: Xét ΔABC có
E là trung điểm của AB
M là trung điểm của AC
Do đó: EM là đường trung bình
=>EM//BC và EM=BC/2
hay EM//BH; EM=BH
Xét tứ giác BEMC có ME//BC
nên BEMC là hình thang
mà \(\widehat{EBC}=\widehat{MCB}\)
nên BEMC là hình thang cân
Xét tứ giác BEMH có ME//BH và ME=BH
nên BEMH là hình thang cân
Xét ΔABC có
H là trung điểm của BC
M là trung điểm của AC
Do đó: HM là đường trung bình
=>HM//AB và HM=AB/2
hay HM//AE và HM=AE
=>AEHM là hình bình hành
mà AE=AM
nên AEHM là hình thoi
a: Xét ΔQEN và ΔQFP có
QE=QF
\(\widehat{EQN}\) chung
QN=QP
Do đó: ΔQEN=ΔQFP
=>EN=FP
b: Ta có: QF+FN=QN
QE+EP=QP
mà QF=QE và QN=QP
nên FN=EP
Xét ΔFNP và ΔEPN có
FN=EP
FP=EN
NP chung
Do đó: ΔFNP=ΔEPN
=>\(\widehat{FPN}=\widehat{ENP}\)
=>\(\widehat{HNP}=\widehat{HPN}\)
=>ΔHNP cân tại H
=>HN=HP
c: Xét ΔQNH và ΔQPH có
QN=QP
NH=PH
QH chung
Do đó: ΔQNH=ΔQPH
=>\(\widehat{QNH}=\widehat{QPH}\)
Ta có: QN=QP
=>Q nằm trên đường trung trực của NP(1)
Ta có: HN=HP
=>H nằm trên đường trung trực của NP(2)
Từ (1),(2) suy ra QH là đường trung trực của NP
=>QH\(\perp\)NP