K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5

BÀI 3. Cho tam giác đều \(A B C\). Lấy một điểm \(M\) bất kỳ nằm trong tam giác. Gọi \(X , Y , Z\) lần lượt là ảnh đối xứng của \(M\) qua các cạnh \(B C , C A , A B\). Kẻ đường cao \(A H \bot B C\). Gọi \(T\) là trung điểm của đoạn \(X Z\).


(a) Chứng minh \(\triangle B A Z sim \triangle A B H T\).

Chú thích trước khi chứng minh:

  • \(A B C\) là tam giác đều nên \(\angle A B C = \angle B C A = \angle C A B = 60^{\circ}\).
  • \(Z\) là ảnh đối xứng của \(M\) qua \(A B\), nên \(A B \bot M Z\) tại trung điểm của \(M Z\).
  • \(X\) là ảnh đối xứng của \(M\) qua \(B C\).

Ta sẽ chứng minh hai tam giác \(B A Z\)\(A B H T\) đồng dạng bằng cách chỉ ra hai cặp góc tương ứng bằng nhau.

  1. Xác định các góc đặc biệt
    • \(Z\) đối xứng \(M\) qua \(A B\), nên \(A B \bot M Z\). Suy ra \(\angle B Z A\) là góc vuông (vì \(Z\) nằm trên đường thẳng qua \(M\) đối xứng qua \(A B\), tức đoạn \(M Z \bot A B\)). Do đó
      \(\angle B Z A = 90^{\circ} .\)
    • \(A H\) là đường cao từ \(A\) xuống \(B C\), suy ra \(A H \bot B C\). Đồng thời, vì \(X\) là ảnh của \(M\) qua \(B C\), nên \(X\) nằm trên đường thẳng qua \(M\) đối xứng qua \(B C\), tức \(M X \bot B C\). Kết hợp hai điều này, \(A H\)\(M X\) đều vuông góc với \(B C\), nên chúng song song nhau:
      \(A H \parallel M X .\)
    • \(T\) là trung điểm của \(X Z\). Do hai điểm \(X\)\(Z\) đều nằm trên hai đường thẳng vuông góc với \(B C\) (lần lượt là ảnh đối xứng của \(M\) qua \(B C\)\(A B\)), nên \(X T\)\(T Z\) thẳng hàng.
  2. Chứng minh hai góc ở hai tam giác bằng nhau
    • Góc \(\angle B A Z\) (trong \(\triangle B A Z\))
      Xét tam giác đều \(A B C\). Vì \(A B C\) đều, \(\angle C A B = 60^{\circ}\). Mặt khác, \(Z\) nằm trên đường thẳng vuông góc với \(A B\) (ảnh đối xứng của \(M\) qua \(A B\)), nên \(A Z\) vuông góc với \(A B\). Vậy
      \(\angle B A Z \textrm{ }\textrm{ } = \textrm{ }\textrm{ } 90^{\circ} - \angle C A B = 90^{\circ} - 60^{\circ} = 30^{\circ} .\)
    • Góc \(\angle A B H\) (trong \(\triangle A B H\))
      \(A H \bot B C\)\(A B C\) đều nên \(\angle A B C = 60^{\circ}\). Từ đó,
      \(\angle A B H = 90^{\circ} - \angle H B O \left(\right. \backslash\text{HBO} \&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{g} \overset{ˊ}{\text{o}} \text{c}\&\text{nbsp};\text{nh}ọ\text{n}\&\text{nbsp};\text{trong}\&\text{nbsp}; \triangle A B H \left.\right) .\)
      Nhưng cụ thể hơn:
      • \(A H \bot B C \textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } \angle A H B = 90^{\circ} .\)
      • Trong tam giác \(A B C\) đều, \(\angle A B C = 60^{\circ}\). Vì \(H\) thuộc \(B C\), điểm thẳng hàng với \(B\), nên \(\angle A B H\) là góc kề bù của \(\angle A B C\) trong tam giác \(A B H\). Do đó
        \(\angle A B H = 180^{\circ} - \angle A B C - \angle A H B = 180^{\circ} - 60^{\circ} - 90^{\circ} = 30^{\circ} .\)
    • Do vậy,
      \(\angle B A Z \textrm{ }\textrm{ } = \textrm{ }\textrm{ } 30^{\circ} \text{v} \overset{ˋ}{\text{a}} \angle A B H = 30^{\circ} \Longrightarrow \angle B A Z = \angle A B H .\)
    • Góc \(\angle B Z A\) (trong \(\triangle B A Z\))
      Như đã nêu, \(A B \bot M Z\) nên \(B Z A\) là góc vuông:
      \(\angle B Z A = 90^{\circ} .\)
    • Góc \(\angle A H T\)
      • Chúng ta đã thấy \(A H \parallel M X\). Vì \(T\) là trung điểm \(X Z\), nên \(M T \parallel A Z\) (với \(A Z \bot A B\)). Khi tầm quan sát theo hình vẽ, ta có “\(A H\) vuông góc với \(B C\)” và “\(M X\) vuông góc với \(B C\)”, nên \(A H \parallel M X\).
      • Đồng thời, \(Z\) nằm trên đường vuông góc từ \(M\) tới \(A B\), tức \(M Z \bot A B\). Và \(T\) nằm trên \(X Z\), nên suy ra \(T Z \bot A B\). Do đó \(T Z \parallel M Z\).
      • Tóm lại, \(A H \bot B C\)\(M X \bot B C\) \(\textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } A H \parallel M X\). Còn \(A Z \bot A B\)\(M Z \bot A B\) \(\textrm{ }\textrm{ } \Longrightarrow \textrm{ }\textrm{ } A Z \parallel M Z\). Kết hợp lại, tam giác \(A H T\) vuông góc tại \(H\).
      • Khi đó, trong \(\triangle A B H\), \(\angle A H T\) là góc tại \(H\) tạo bởi \(A H\)\(H T\). Mà \(A H\) vuông góc với \(B C\), đồng thời \(H T\) song song với \(A Z\) (vì \(T\) trung điểm \(X Z\)\(Z \in \left(\right. M Z \left.\right)\)
6 tháng 8 2021

đm con mặt lồn

6 tháng 8 2021

im đi Lê Minh Phương

bài này dễ mà bạn

Cho đoạn thẳng AB,đường trung trực của đoạn thẳng AB cắt AB tại I,Trên đường thẳng d lấy các điểm M N tùy ý,Chứng minh tam giác MNA = tam giác MNB,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Cho đoạn thẳng AB,đường trung trực của đoạn thẳng AB cắt AB tại I,Trên đường thẳng d lấy các điểm M N tùy ý,Chứng minh tam giác MNA = tam giác MNB,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

13 tháng 11 2016

mn tl dùm nha

4 tháng 4 2017

Đường tròn c: Đường tròn qua A với tâm O Đoạn thẳng f: Đoạn thẳng [A, D] Đoạn thẳng i: Đoạn thẳng [I, C] Đoạn thẳng j: Đoạn thẳng [A, O] Đoạn thẳng k: Đoạn thẳng [C, A] Đoạn thẳng l: Đoạn thẳng [C, D] Đoạn thẳng n: Đoạn thẳng [A, E] Đoạn thẳng r: Đoạn thẳng [D, D'] A = (-4.82, 9) A = (-4.82, 9) A = (-4.82, 9) D = (6.09, 9) D = (6.09, 9) D = (6.09, 9) Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm I: Trung điểm của f Điểm O: Điểm trên h Điểm O: Điểm trên h Điểm O: Điểm trên h Điểm B: Giao điểm của c, g Điểm B: Giao điểm của c, g Điểm B: Giao điểm của c, g Điểm C: Giao điểm của c, g Điểm C: Giao điểm của c, g Điểm C: Giao điểm của c, g Điểm E: Giao điểm của m, l Điểm E: Giao điểm của m, l Điểm E: Giao điểm của m, l Điểm D': D đối xứng qua k Điểm D': D đối xứng qua k Điểm D': D đối xứng qua k

a. Ta thấy ngay \(\widehat{IAB}=\widehat{ICA}\) (Cùng chắn cung AB)

Vậy thì \(\Delta AIB\sim\Delta CIA\left(g-g\right)\Rightarrow\frac{IA}{IC}=\frac{IB}{IA}\Rightarrow IB.IB=IA^2=a^2\)

Vậy IB.IC không đổi.

b.Ta thấy CI vừa là đường cao, vừa là trung tuyến nên tam giác CAD cân tại C. Vậy \(\widehat{CDA}=\widehat{CAD}\) 

Gọi E là giao điểm của AB và CD. Ta có \(\widehat{DAE}=\widehat{ACI}\left(cmt\right)\) nên ta có:

\(\widehat{DAE}+\widehat{EDA}=\widehat{ACI}+\widehat{IAC}=90^o\Rightarrow\widehat{AED}=180^o-90^o=90^o.\)

Vậy AE là đường cao tam giác ADC. Vậy B là trực tâm của tam giác này.

Xét tam giác ABC có: \(CD⊥AB;AD⊥BC;BD⊥AC\), suy ra D là trực tâm của tam giác.

c) Do D' đối xứng với D qua AC nên \(\widehat{D'CA}=\widehat{DCA}\)

Lại có \(\widehat{DCA}=\widehat{DBE}\) (Cùng phụ góc BDC)

Mà \(\widehat{DBE}=\widehat{ABD'}\) (Đối đỉnh) nên \(\widehat{ABD'}=\widehat{D'CA}\)

Xét tứ giác D'CBA có \(\widehat{ABD'}=\widehat{D'CA}\) nên nó là tứ giác nội tiếp. Vậy D thuộc đường tròn qua A, B, C hay thuộc đường tròn (O).

2 tháng 1 2019

Diện tích tam giác DEG là 50 m2

Cách giải làm sau

Chúc em học tốt!

20 tháng 1 2017

Ủa? Xác định tam giác là phải làm gì?

18 tháng 3 2020

https://olm.vn/hoi-dap/detail/2038398549.html\

bạn làm theo bài này nhé