tìm cặp số x,y nguyên:
2x+2x-5y=9
x^2+45=y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2y)^ 2 = 41 − (x − y)^ 2 − x^ 2 ≤ 41
⇒ y = {0; ±1; ±2; ±3}
Mặt khác do 5y^2 = 41 − 2 (x^ 2 − xy)
Với y = −3 ⇒ 2x 2 + 6xy + 4 = 0 ⇒ x = −1
x = −2
- Với y=-1............................ bạn làm tương tự
xy-2x+5y-12=0 => xy-2x+5y=12 => x(y-2)+5y=0 hoặc y(5+x)-2x=0
......
viets pt ra:
x(y-2)+5(y-2)-2=0
(x+5)(y-2)=2=2*1=1*2=-1*-2=-2*-1
kẻ bảng rồi tính tiếp nha
\(xy-2x+5y-12=0\)
\(\Leftrightarrow xy-2x+5y-10=2\)
\(\Leftrightarrow x\left(y-2\right)+5\left(y-2\right)=2\)
\(\Leftrightarrow\left(x+5\right)\left(y-2\right)=2\)
Sau đó lập bảng là ra
\(2x-5y+5xy=14\)
\(\Leftrightarrow2x-2+5y\left(x-1\right)=12\)
\(\Leftrightarrow\left(x-1\right)\left(5y+2\right)=12\)
mà \(x,y\)nguyên nên \(5y+2\)chia cho \(5\)dư \(2\).
Ta có bảng giá trị:
5y+2 | -3 | 2 | 12 |
x-1 | -4 | 6 | 1 |
y | -1 | 0 | 2 |
x | -3 | 7 | 2 |
Vậy phương trình có các nghiệm là: \(\left(-3,-1\right),\left(7,0\right),\left(2,2\right)\).
Ta có : xy - 2x + 5y - 12 = 0 <=> y(x + 5) - 2(x+5) -2 = 0 <=> (y - 2)(x + 5) = 2
(bạn tự lập bảng rồi làm tiếp nha)
a) \(xy+3x-2y-7=0\)
\(\Leftrightarrow x\left(y+3\right)-2y-6=1\)
\(\Leftrightarrow\left(x-2\right)\left(y+3\right)=1\)
mà \(x,y\)nguyên nên \(x-2,y+3\)là ước của \(1\)nên ta có bảng giá trị:
x-2 | 1 | -1 |
y+3 | 1 | -1 |
x | 3 | -1 |
y | -2 | -4 |
Vậy phương trình có nghiệm là: \(\left(3,-2\right),\left(-1,-4\right)\).
b) \(5y-2x^2-2y^2+2=0\)
\(\Leftrightarrow16x^2+16y^2-40y-16=0\)
\(\Leftrightarrow\left(4x\right)^2+\left(4y-5\right)^2=41\)
Vì \(x,y\)nguyên nên \(\left(4x\right)^2,\left(4y-5\right)^2\)là các số chính phương.
Phân tích \(41\)thành tổng hai số chính phương có cách duy nhất bằng \(41=16+25\)
mà \(\left(4x\right)^2⋮16\)nên ta có:
\(\hept{\begin{cases}\left(4x\right)^2=16\\\left(4y-5\right)^2=25\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=0\end{cases}}\)(vì \(y\)nguyên)
\(3xy+2x-5y=6\)
\(\Leftrightarrow9xy+6x-15y=18\)
\(\Leftrightarrow\left(9xy+6x\right)-\left(15y+10\right)=8\)
\(\Leftrightarrow3x.\left(3y+2\right)-5\left(3y+2\right)=8\)
\(\Leftrightarrow\left(3x-5\right)\left(3y+2\right)=8\)
Do x,y nguyên nên ta có bảng sau
3x - 5 | 1 | 8 | -1 | -8 | 4 | 2 | -4 | -2 |
3y + 2 | 8 | 1 | -8 | -1 | 2 | 4 | -2 | -4 |
x | 2 | \(\frac{13}{3}\)( loại ) | \(\frac{4}{3}\)( loại ) | -1 | 3 | \(\frac{7}{3}\)( loại ) | \(\frac{1}{3}\)( loại ) | 1 |
y | 2 | \(-\frac{1}{3}\)( loại ) | \(-\frac{10}{3}\)( loại ) | -1 | 0 | \(\frac{2}{3}\)( loại ) | \(-\frac{4}{3}\)( loại ) | -2 |
Bạn tự KL nhé
3xy+2x−5y=6
⇔9𝑥𝑦+6𝑥−15𝑦=18⇔9xy+6x−15y=18
⇔(9𝑥𝑦+6𝑥)−(15𝑦+10)=8⇔(9xy+6x)−(15y+10)=8
⇔3𝑥.(3𝑦+2)−5(3𝑦+2)=8⇔3x.(3y+2)−5(3y+2)=8
⇔(3𝑥−5)(3𝑦+2)=8⇔(3x−5)(3y+2)=8
TA có:
\(2x-5y+5xy=9\)
\(\Rightarrow2x-5y\left(1-x\right)=9\)
\(\Rightarrow2-\left[2x-5y\left(1-x\right)\right]=2-9\)
\(\Rightarrow2-2x+5y\left(1-x\right)=-7\)
\(\Rightarrow2\left(1-x\right)+5y\left(1-x\right)=-7\)
\(\Rightarrow\left(2+5y\right)\left(1-x\right)=-7\)
\(\Rightarrow\left(2+5y\right);\left(1-x\right)\in U\left(-7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng chọn gt sau:
\(2+5y\) | -7 | -1 | 1 | 7 |
\(1-x\) | 1 | 7 | -7 | -1 |
\(y\) | -9/5 | -3/5 | -1/5 | 1 |
\(x\) | 0 | 6 | 8 | 2 |
KL | Loại | Loại | Loại | Chọn |
Vậy \(x=2;y=1\)
Chẳng có câu nào