K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2017

pt\(\Rightarrow\left(x-2\right)^2=\left(\sqrt{x+1}\right)^2\)

\(\Rightarrow x^2-4x+4=x+1\Rightarrow x^2-5x=-3\Leftrightarrow x^2-5x+3=0\Leftrightarrow x^2-2.\frac{5}{2}.x+\left(\frac{5}{2}\right)^2-\frac{13}{4}=0\)

\(\Leftrightarrow\left(x-\frac{5}{2}\right)^2=\frac{13}{4}\Rightarrow\orbr{\begin{cases}x-\frac{5}{2}=\frac{\sqrt{13}}{2}\\x-\frac{5}{2}=\frac{-\sqrt{13}}{2}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{\sqrt{13}+5}{2}\\x=\frac{5-\sqrt{13}}{2}\end{cases}}\)

23 tháng 9 2019

1/ ĐKXĐ:...

\(\Leftrightarrow\sqrt{x+1+2\sqrt{x+1}+1}+\sqrt{x+1-2\sqrt{x+1}+1}=\frac{x+5}{2}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+1}+1\right)^2}+\sqrt{\left(1-\sqrt{x+1}\right)^2}=\frac{x+5}{2}\)

\(\Leftrightarrow\sqrt{x+1}+1+\left|1-\sqrt{x+1}\right|=\frac{x+5}{2}\)

Nếu \(0\ge x\ge-1\Rightarrow\left|1-\sqrt{x+1}\right|=1-\sqrt{x+1}\)

\(\Rightarrow2=\frac{x+5}{2}\Leftrightarrow x=-1\left(tm\right)\)

Nếu \(x>0\Rightarrow\left|1-\sqrt{x+1}\right|=\sqrt{x+1}-1\)

\(\Rightarrow2\sqrt{x+1}=\frac{x+5}{2}\Leftrightarrow16x+16=x^2+10x+25\)

\(\Leftrightarrow x^2-6x+9=0\Leftrightarrow x=3\left(tm\right)\)

Vậy...

Câu dưới tương tự

NV
11 tháng 1 2021

Đặt \(\left\{{}\begin{matrix}\sqrt[8]{1-x}=a\ge0\\\sqrt[8]{1+x}=b\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+ab=3\\a^8+b^8=2\end{matrix}\right.\)

Ta có: \(a^8+7+b^8+7\ge8a+8b\)

\(a^8+b^8+6\ge8ab\)

\(\Rightarrow2\left(a^8+b^8\right)+20\ge8\left(ab+a+b\right)=24\)

\(\Rightarrow a^8+b^8\ge2\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=1\) hay \(x=0\)

10 tháng 9 2016

Bạn tách phần trong căn ra, mình làm mẫu nhé

 x +2 căn ( x-1)= ( x-1) +2 căn (x-1) +1

= ( căn(x-1) -1)^2

k nha

27 tháng 8 2016

bn thử đặt đi xem ra ko

27 tháng 8 2016

Nếu được, Uchiha Itachi làm hộ mình nhé

27 tháng 2 2021

`x=(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}})^2(1>=x>=0)`

`<=>x=((\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}})^2(1+\sqrt{1-\sqrt{x}}))/(1+\sqrt{1-\sqrt{x}})`

`<=>x=(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x})(1-1+\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})`

`<=>x=\sqrt{x}.(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})`

`<=>\sqrt{x}((\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})-1)=0`

Có `x>=0`

`=>1-\sqrt{x}<=1`

`=>1+\sqrt{1-\sqrt{x}}<=2`

`=>1/(1+\sqrt{1-\sqrt{x}})>=1/2`

Mà `(\sqrt{x}+2004)>=2004`

`=>(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x})>=2004`

`=>(\sqrt{x}+2004)(1-\sqrt{1-\sqrt{x}))/(1+\sqrt{1-\sqrt{x}})>=1002>0`

`=>\sqrt{x}=0`

`=>x=0`

Vậy `S={0}`

NV
27 tháng 2 2021

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow x=\left(2004+\sqrt{x}\right)\left(\dfrac{\sqrt{x}}{1+\sqrt{1-\sqrt{x}}}\right)^2\)

\(\Leftrightarrow x=\dfrac{x\left(2004+\sqrt{x}\right)}{2-\sqrt{x}+2\sqrt{1-\sqrt{x}}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{2004+\sqrt{x}}{2-\sqrt{x}+2\sqrt{1-\sqrt{x}}}=1\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2004+\sqrt{x}=2-\sqrt{x}+2\sqrt{1-\sqrt{x}}\)

\(\Leftrightarrow1001+\sqrt{x}=\sqrt{1-\sqrt{x}}\)

\(VT\ge1001\) ; \(VP\le1\) nên (1) vô nghiệm

9 tháng 11 2021

\(ĐK:-5\le x\le3\)

Đặt \(\sqrt{x+5}+\sqrt{3-x}=t\ge0\Leftrightarrow t^2-8=2\sqrt{15-2x-x^2}\), PTTT:

\(t-t^2+8-2=0\\ \Leftrightarrow t^2-t-6=0\\ \Leftrightarrow t=3\left(t\ge0\right)\\ \Leftrightarrow2\sqrt{15-2x-x^2}=3^2-8=1\\ \Leftrightarrow60-8x-4x^2=1\\ \Leftrightarrow4x^2+8x-59=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+3\sqrt{7}}{2}\left(tm\right)\\x=\dfrac{-2-3\sqrt{7}}{2}\left(tm\right)\end{matrix}\right.\)

Vậy nghiệm pt là ...

19 tháng 8 2016

Đặt a = √(1-x)

b = √x

=> a+ b2 = 1 và 1 + 2ab/3 = a + b

Giải hệ này tìm được a,b thế vô tìm được x

19 tháng 8 2016
Ủa mới thấy bạn đăng 1 câu căn bậc 3 gì đó mà sao không thấy nữa ta